• Title/Summary/Keyword: Neuralnet

Search Result 3, Processing Time 0.019 seconds

Neural network analysis using neuralnet in R (R의 neuralnet을 활용한 신경망분석)

  • Baik, Jaiwook
    • Industry Promotion Research
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • We investigated multi-layer perceptrons and supervised learning algorithms, and also examined how to model functional relationships between covariates and response variables using a package called neuralnet. The algorithm applied in this paper is characterized by continuous adjustment of the weights, which are parameters to minimize the error function based on the comparison between the actual and predicted values of the response variable. In the neuralnet package, the activation and error functions can be appropriately selected according to the given situation, and the remaining parameters can be set as default values. As a result of using the neuralnet package for the infertility data, we found that age has little influence on infertility among the four independent variables. In addition, the weight of the neural network takes various values from -751.6 to 7.25, and the intercepts of the first hidden layer are -92.6 and 7.25, and the weights for the covariates age, parity, induced, and spontaneous to the first hidden neuron are identified as 3.17, -5.20, -36.82, and -751.6.

Design & Implementation of Speechreading System using the Face Feature on the Korean 8 Vowels (얼굴 특징점을 이용한 한국어 8모음 독화 시스템 구축)

  • Kim, Sun-Ok;Lee, Kyong-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.135-140
    • /
    • 2009
  • 본 논문은 한국어 8 단모음을 인식하는 자동 독화 신경망 시스템을 구축한 것이다. 얼굴의 특정들은 휘도와 채도 성분으로 인하여 다양한 색 공간에서 다양한 표현 값을 갖는다. 이를 이용하여 각 표현 값들을 증폭하거나 축소, 대비시킴으로서 얼굴 특정들을 추출되게 하였다. 눈과 코, 안쪽 입의 외곽선, 이의 외곽선을 찾았고, 그 후 한국어 8모음 발화시 구분되게 변화는 값들을 파라미터로 설정하였다. 한국어 8모음을 발화하는 2400개의 자료를 모아 분석하고 이 분석을 바탕으로 신경망 시스템을 구축하여 실험하였다. 이 실험에 정상인 5명이 동원되었고, 사람들 사이에 있는 관찰 오차를 정규화를 통하여 수정하였다. 5명으로 분석하였고, 5명으로 인식 실험하여 좋은 결과를 얻었다.

  • PDF

Call Admission Control in ATM by Neural Networks and Fuzzy Pattern Estimator (신경망과 퍼지 패턴 추정기를 이용한 ATM의 호 수락 제어)

  • Lee, Jin-Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2188-2195
    • /
    • 1999
  • This paper proposes a new call admission control scheme utilizing an inverse fuzzy vector quantizer(IFVQ) and neuralnet, which combines benefits of IFVQ and flexibilities of FCM(Fuzzy-C-Means) arithmetics, to decide whether a requested call not to be trained in learning phase to be connected or not. The system generates the estimated traffic pattern for the cell stream of a new call, using feasible/infeasible patterns in codebook, fuzzy membership values that represent the degree to which each pattern of codebook matches input pattern, and FCM arithmetics. The input to the NN is the vector consisted of traffic parameters which are the means and variances of the number of cells arriving in decision as to whether to accept or reject a new call depends on whether the NN is used for decision threshold(+0.5). This method is a new technique for call admission control using the membership values as traffic parameter which declared to CAC at the call set up stage, and this is valid for a very general traffic model in which the calls of a stream can belong to an unlimited number of traffic classes. Through the simulations, it is founded the performance of the suggested method outperforms compared to the conventional NN method.

  • PDF