• 제목/요약/키워드: Neural network training algorithm

검색결과 602건 처리시간 0.025초

EFFECTS OF RANDOMIZING PATTERNS AND TRAINING UNEQUALLY REPRESENTED CLASSES FOR ARTIFICIAL NEURAL NETWORKS

  • Kim, Young-Sup;Coleman Tommy L.
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2002년도 춘계학술대회 논문집
    • /
    • pp.45-52
    • /
    • 2002
  • Artificial neural networks (ANN) have been successfully used for classifying remotely sensed imagery. However, ANN still is not the preferable choice for classification over the conventional classification methodology such as the maximum likelihood classifier commonly used in the industry production environment. This can be attributed to the ANN characteristic built-in stochastic process that creates difficulties in dealing with unequally represented training classes, and its training performance speed. In this paper we examined some practical aspects of training classes when using a back propagation neural network model for remotely sensed imagery. During the classification process of remotely sensed imagery, representative training patterns for each class are collected by polygons or by using a region-growing methodology over the imagery. The number of collected training patterns for each class may vary from several pixels to thousands. This unequally populated training data may cause the significant problems some neural network empirical models such as back-propagation have experienced. We investigate the effects of training over- or under- represented training patterns in classes and propose the pattern repopulation algorithm, and an adaptive alpha adjustment (AAA) algorithm to handle unequally represented classes. We also show the performance improvement when input patterns are presented in random fashion during the back-propagation training.

  • PDF

역전파 알고리즘을 이용한 경계결정의 구성에 관한 연구 (The Structure of Boundary Decision Using the Back Propagation Algorithms)

  • 이지영
    • 정보학연구
    • /
    • 제8권1호
    • /
    • pp.51-56
    • /
    • 2005
  • The Back propagation algorithm is a very effective supervised training method for multi-layer feed forward neural networks. This paper studies the decision boundary formation based on the Back propagation algorithm. The discriminating powers of several neural network topology are also investigated against five manually created data sets. It is found that neural networks with multiple hidden layer perform better than single hidden layer.

  • PDF

Flexural and axial vibration analysis of beams with different support conditions using artificial neural networks

  • Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • 제18권3호
    • /
    • pp.303-314
    • /
    • 2004
  • An artificial neural network (ANN) application is presented for flexural and axial vibration analysis of elastic beams with various support conditions. The first three natural frequencies of beams are obtained using multi layer neural network based back-propagation error learning algorithm. The natural frequencies of beams are calculated for six different boundary conditions via direct solution of governing differential equations of beams and Rayleigh's approximate method. The training of the network has been made using these data only flexural vibration case. The trained neural network, however, had been tested for cantilever beam (C-F), and both end free (F-F) in case the axial vibration, and clamped-clamped (C-C), and Guided-Pinned (G-P) support condition in case the flexural vibrations which were not included in the training set. The results found by using artificial neural network are sufficiently close to the theoretical results. It has been demonstrated that the artificial neural network approach applied in this study is highly successful for the purposes of free vibration analysis of elastic beams.

전기품질 진단 시스템 개발을 위한 인공 신경망 적용에 관한 연구 (A Study on Power Quality Diagnosis System using Neural NetWorks)

  • 김진수;김영일;김광순;박기주
    • 전기학회논문지
    • /
    • 제56권8호
    • /
    • pp.1351-1359
    • /
    • 2007
  • In this paper, we have studied the power quality(PQ) diagnosis system with the two methods for PQ diagnosis. One to Apply a regulation value in compliance with mathematics calculation, and the other Automatic identification using Neural network algorithm. Neural network algorithm is used for an automatic diagnosis of the PQ. The regulation proposed by IEEE 1159 Working group is applied for the precision of the diagnosis. In order to divide accurate segmentation, the algorithm for a computer training used the back propagation out of several neural network algorithms. We have configured the proto-type sample by using Labview and a programmed Neural Networks Algorithm using with C. And arbitrary electric Signal generated by OMICRON Company's CMC 256-6 for an efficiency test.

격자 확률신경망 기법을 이용한 구조물의 능동 제어 (Active Control of Structures Using Lattice Probabilistic Neural Network)

  • 김동현;장성규;권순덕;김두기
    • 한국소음진동공학회논문집
    • /
    • 제17권7호
    • /
    • pp.662-667
    • /
    • 2007
  • A new neuro-control scheme for active control of structures is proposed. It utilizes lattice pattern of state vector as training data of probabilistic neural network(PNN). Therefore. it is the so-called lattice probabilistic neural network(LPNN). PNN makes control forces by using all the training patterns. Therefore, it takes much time to obtain a control force in application. This inevitably may delay the control action. However. control force of LPNN is calculated by using only the adjacent information of LPNN input. So, the response of LPNN is greatly faster than PNN. The proposed control algorithm is applied for three story building under California and El Centro earthquakes. Also, control results of the LPNN are compared with those of the conventional PNN. The structural responses have been suppressed effectively by the proposed algorithm.

신경망 학습알고리즘의 비교와 2차원 익형의 비정상 공력하중 예측기법에 관한 연구 (Study of Neural Network Training Algorithm Comparison and Prediction of Unsteady Aerodynamic Forces of 2D Airfoil)

  • 강승온;전상욱;박경현;전용희;이동호
    • 한국항공우주학회지
    • /
    • 제37권5호
    • /
    • pp.425-432
    • /
    • 2009
  • 본 연구에서는 오일러 CFD코드에서 얻은 데이터를 이용하여 2차원 익형의 비정상 공력하중을 모델링하고 예측할 수 있는 신경망의 능력을 확인하였다. 신경망 모델은 감독자 관리 학습을 기반으로 하여 르벤버그-마쿼트 알고리즘, 그리고 여기에 유전알고리즘을 결합시킨 혼합형 유전알고리즘을 사용하여 구성하고 각 경우에 대하여 그 효율성을 비교 분석하였다. 복잡한 시스템을 모사하는 신경망을 학습시키는 데는 혼합형유전알고리즘이 더 효율적이라는 것을 보였으며 신경망모델에 의한 2차원 익형의 비정상공력하중 예측결과 실제 수치결과와 비교적 정확하게 일치하여 신경망 모델이 축소모델로서의 기능을 발휘하는 것을 입증하였다.

Pipeline wall thinning rate prediction model based on machine learning

  • Moon, Seongin;Kim, Kyungmo;Lee, Gyeong-Geun;Yu, Yongkyun;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4060-4066
    • /
    • 2021
  • Flow-accelerated corrosion (FAC) of carbon steel piping is a significant problem in nuclear power plants. The basic process of FAC is currently understood relatively well; however, the accuracy of prediction models of the wall-thinning rate under an FAC environment is not reliable. Herein, we propose a methodology to construct pipe wall-thinning rate prediction models using artificial neural networks and a convolutional neural network, which is confined to a straight pipe without geometric changes. Furthermore, a methodology to generate training data is proposed to efficiently train the neural network for the development of a machine learning-based FAC prediction model. Consequently, it is concluded that machine learning can be used to construct pipe wall thinning rate prediction models and optimize the number of training datasets for training the machine learning algorithm. The proposed methodology can be applied to efficiently generate a large dataset from an FAC test to develop a wall thinning rate prediction model for a real situation.

퍼지 신경회로망을 이용한 원격감지 영상의 분류 (Classification of remotely sensed images using fuzzy neural network)

  • 이준재;황석윤;김효성;이재욱;서용수
    • 전자공학회논문지S
    • /
    • 제35S권3호
    • /
    • pp.150-158
    • /
    • 1998
  • This paper describes the classification of remotely sensed image data using fuzzy neural network, whose algorithm was obtained by replacing real numbers used for inputs and outputs in the standard back propagation algorithm with fuzzy numbers. In the proposed method, fuzzy patterns, generated based on the histogram ofeach category for the training data, are put into the fuzzy neural network with real numbers. The results show that the generalization and appoximation are better than that ofthe conventional network in determining the complex boundary of patterns.

  • PDF

유전알고리즘을 이용한 부분방전 패턴인식 최적화 연구 (A Study on the Optimization of PD Pattern Recognition using Genetic Algorithm)

  • 김성일;이상화;구자윤
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.126-131
    • /
    • 2009
  • This study was carried out for the reliability of PD(Partial Discharge) pattern recognition. For the pattern recognition, the database for PD was established by use of self-designed insulation defects which occur and were mostly critical in GIS(Gas Insulated Switchgear). The acquired database was analyzed to distinguish patterns by means of PRPD(Phase Resolved Partial Discharge) method and stored to the form with to unite the average amplitude of PD pulse and the number of PD pulse as the input data of neural network. In order to prove the performance of genetic algorithm combined with neural network, the neural networks with trial-and-error method and the neural network with genetic algorithm were trained by same training data and compared to the results of their pattern recognition rate. As a result, the recognition success rate of defects was 93.2% and the neural network train process by use of trial-and-error method was very time consuming. The recognition success rate of defects, on the other hand, was 100% by applying the genetic algorithm at neural network and it took a relatively short time to find the best solution of parameters for optimization. Especially, it could be possible that the scrupulous parameters were obtained by genetic algorithm.

Modeling and assessment of VWNN for signal processing of structural systems

  • Lin, Jeng-Wen;Wu, Tzung-Han
    • Structural Engineering and Mechanics
    • /
    • 제45권1호
    • /
    • pp.53-67
    • /
    • 2013
  • This study aimed to develop a model to accurately predict the acceleration of structural systems during an earthquake. The acceleration and applied force of a structure were measured at current time step and the velocity and displacement were estimated through linear integration. These data were used as input to predict the structural acceleration at next time step. The computation tool used was the Volterra/Wiener neural network (VWNN) which contained the mathematical model to predict the acceleration. For alleviating problems of relatively large-dimensional and nonlinear systems, the VWNN model was utilized as the signal processing tool, including the Taylor series components in the input nodes of the neural network. The number of the intermediate layer nodes in the neural network model, containing the training and simulation stage, was evaluated and optimized. Discussions on the influences of the gradient descent with adaptive learning rate algorithm and the Levenberg-Marquardt algorithm, both for determining the network weights, on prediction errors were provided. During the simulation stage, different earthquake excitations were tested with the optimized settings acquired from the training stage to find out which of the algorithms would result in the smallest error, to determine a proper simulation model.