• 제목/요약/키워드: Neural network training algorithm

검색결과 612건 처리시간 0.047초

A Practical Radial Basis Function Network and Its Applications

  • Yang, S.Q.;Jia, C.Y.
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2001년도 The Seoul International Simulation Conference
    • /
    • pp.297-300
    • /
    • 2001
  • Artificial neural networks have become important tools in many fields. This paper describes a new algorithm fur training an RBF network. This algorithm has two main advantages: higher accuracy and a too stable learning process. In addition, it can be used as a good classifier in pattern recognition.

  • PDF

신경회로망을 응용한 현가장치의 폐회로 시스템 규명 (Empirical Closed Loop Modeling of a Suspension System Using Neural Network)

  • Kim, I.Y.;Chong, K.T.;Hong, D.P.
    • 한국정밀공학회지
    • /
    • 제14권7호
    • /
    • pp.29-38
    • /
    • 1997
  • A closed-loop system modeling of an active/semiactive suspension system has been accomplished through an artificial neural network. A 7DOF full model as a system's equation of motion has been derived and an output feedback linear quadratic regulator has been designed for control purpose. A training set of a sample data has been obtained through a computer simulation. A 7DOF full model with LQR controller simulated under several road conditions such as sinusoidal bumps and rectangular bumps. A general multilayer perceptron neural network is used for dynamic modeling and target outputs are fedback to the a layer. A backpropagation method is used as a training algorithm. Model validation of new dataset have been shown through computer simulations.

  • PDF

전이학습 기반 사출 성형품 burr 이미지 검출 시스템 개발 (Development of a transfer learning based detection system for burr image of injection molded products)

  • 양동철;김종선
    • Design & Manufacturing
    • /
    • 제15권3호
    • /
    • pp.1-6
    • /
    • 2021
  • An artificial neural network model based on a deep learning algorithm is known to be more accurate than humans in image classification, but there is still a limit in the sense that there needs to be a lot of training data that can be called big data. Therefore, various techniques are being studied to build an artificial neural network model with high precision, even with small data. The transfer learning technique is assessed as an excellent alternative. As a result, the purpose of this study is to develop an artificial neural network system that can classify burr images of light guide plate products with 99% accuracy using transfer learning technique. Specifically, for the light guide plate product, 150 images of the normal product and the burr were taken at various angles, heights, positions, etc., respectively. Then, after the preprocessing of images such as thresholding and image augmentation, for a total of 3,300 images were generated. 2,970 images were separated for training, while the remaining 330 images were separated for model accuracy testing. For the transfer learning, a base model was developed using the NASNet-Large model that pre-trained 14 million ImageNet data. According to the final model accuracy test, the 99% accuracy in the image classification for training and test images was confirmed. Consequently, based on the results of this study, it is expected to help develop an integrated AI production management system by training not only the burr but also various defective images.

An attempt to reduce the number of training in the artificial neural network

  • Omae, Akihiro;Ishijima, Shintaro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1256-1258
    • /
    • 1990
  • A large number of trainings are requested for the artificial neural network using the backpropagation algorithm. It is shown that one dimensional search technique is effective to reduce the number of trainings through some numerical simulations.

  • PDF

신경망을 이용한 포병모의훈련체계 향상방안 (Enhancement of Artillery Simulation Training System by Neural Network)

  • 류혜준;고효헌;김지현;김성식
    • 한국국방경영분석학회지
    • /
    • 제34권1호
    • /
    • pp.1-11
    • /
    • 2008
  • 본 연구에서는 다양하고 복잡한 변수간의 비선형적인 관계를 분석할 수 있는 신경망의 특성을 이용하여 곡사화기를 사용하는 포병의 모의훈련체계를 향상시킬 수 있는 방안을 제시하였다. 신경망 모델은 Conjugate Gradient 학습알고리즘을 사용하였고, 모델의 신뢰성은 모의실험을 통해 수학적 회귀분석모델과 신경망 모델의 예측오차를 비교하여 입증하였다. 신경망모델을 곡사화기 모의훈련체계 개선에 활용한다면, 보다 실전적인 모의훈련을 가능하게 하여 전투력 향상 및 예산절감에도 크게 기여할 것이다.

신경회로망과 하절기 온도 민감도를 이용한 단기 전력 수요 예측 (Short-Term Load Forecasting Using Neural Networks and the Sensitivity of Temperatures in the Summer Season)

  • 하성관;김홍래;송경빈
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권6호
    • /
    • pp.259-266
    • /
    • 2005
  • Short-term load forecasting algorithm using neural networks and the sensitivity of temperatures in the summer season is proposed. In recent 10 years, many researchers have focused on artificial neural network approach for the load forecasting. In order to improve the accuracy of the load forecasting, input parameters of neural networks are investigated for three training cases of previous 7-days, 14-days, and 30-days. As the result of the investigation, the training case of previous 7-days is selected in the proposed algorithm. Test results show that the proposed algorithm improves the accuracy of the load forecasting.

Real-time estimation of break sizes during LOCA in nuclear power plants using NARX neural network

  • Saghafi, Mahdi;Ghofrani, Mohammad B.
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.702-708
    • /
    • 2019
  • This paper deals with break size estimation of loss of coolant accidents (LOCA) using a nonlinear autoregressive with exogenous inputs (NARX) neural network. Previous studies used static approaches, requiring time-integrated parameters and independent firing algorithms. NARX neural network is able to directly deal with time-dependent signals for dynamic estimation of break sizes in real-time. The case studied is a LOCA in the primary system of Bushehr nuclear power plant (NPP). In this study, number of hidden layers, neurons, feedbacks, inputs, and training duration of transients are selected by performing parametric studies to determine the network architecture with minimum error. The developed NARX neural network is trained by error back propagation algorithm with different break sizes, covering 5% -100% of main coolant pipeline area. This database of LOCA scenarios is developed using RELAP5 thermal-hydraulic code. The results are satisfactory and indicate feasibility of implementing NARX neural network for break size estimation in NPPs. It is able to find a general solution for break size estimation problem in real-time, using a limited number of training data sets. This study has been performed in the framework of a research project, aiming to develop an appropriate accident management support tool for Bushehr NPP.

Cascade 안면 검출기와 컨볼루셔널 신경망을 이용한 얼굴 분류 (Face Classification Using Cascade Facial Detection and Convolutional Neural Network)

  • 유제훈;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제26권1호
    • /
    • pp.70-75
    • /
    • 2016
  • 머신비전을 사용하여 사람의 얼굴을 인식하는 다양한 연구가 진행되고 있다. 머신비전은 기계에 시각을 부여하여 이미지를 분류 혹은 분석하는 기술을 의미한다. 본 논문에서는 이러한 머신비전 기술을 적용한 얼굴을 분류하는 알고리즘을 제안한다. 이 얼굴 분류 알고리즘을 구현하기 위해 컨볼루셔널 신경망(Convolution neural network)과 Cascade 안면 검출기를 사용하였고, 피험자들의 얼굴을 분류하였다. 구현한 얼굴 분류 알고리즘의 학습을 위해 한 피험자 당 이미지 2,000장, 3,000장, 40,00장을 10회와 20회 컨볼루셔널 신경망에 각각 반복하여 학습과 분류를 진행하였고, 학습된 컨볼루셔널 신경망과 얼굴 분류 알고리즘의 실효성을 테스트하기 위해 약 6,000장의 이미지를 분류하였다. 또한 USB 카메라 영상을 실험 데이터로 입력받아 실시간으로 얼굴을 검출하고 분류하는 시스템을 구현하였다.

인공신경망 이론을 이용한 충주호의 수질예측 (Water Quality Forecasting of Chungju Lake Using Artificial Neural Network Algorithm)

  • 정효준;이소진;이홍근
    • 한국환경과학회지
    • /
    • 제11권3호
    • /
    • pp.201-207
    • /
    • 2002
  • This study was carried out to evaluate the artificial neural network algorithm for water quality forecasting in Chungju lake, north Chungcheong province. Multi-layer perceptron(MLP) was used to train artificial neural networks. MLP was composed of one input layer, two hidden layers and one output layer. Transfer functions of the hidden layer were sigmoid and linear function. The number of node in the hidden layer was decided by trial and error method. It showed that appropriate node number in the hidden layer is 10 for pH training, 15 for DO and BOD, respectively. Reliability index was used to verify for the forecasting power. Considering some outlying data, artificial neural network fitted well between actual water quality data and computed data by artificial neural networks.

전자제품생산의 조정고정을 위한 지능형 제어알고리즘 (Intelligent Control Algorithm for the Adjustment Process During Electronics Production)

  • 장석호;구영모;고택범;우광방
    • 제어로봇시스템학회논문지
    • /
    • 제4권4호
    • /
    • pp.448-457
    • /
    • 1998
  • A neural network based control algorithm with fuzzy compensation is proposed for the automated adjustment in the production of electronic end-products. The process of adjustment is to tune the variable devices in order to examine the specified performances of the products ready prior to packing. Camcorder is considered as a target product. The required test and adjustment system is developed. The adjustment system consists of a NNC(neural network controller), a sub-NNC, and an auxiliary algorithm utilizing the fuzzy logic. The neural network is trained by means of errors between the outputs of the real system and the network, as well as on the errors between the changing rate of the outputs. Control algorithm is derived to speed up the learning dynamics and to avoid the local minima at higher energy level, and is able to converge to the global minimum at lower energy level. Many unexpected problems in the application of the real system are resolved by the auxiliary algorithms. As the adjustments of multiple items are related to each other, but the significant effect of performance by any specific item is not observed. The experimental result shows that the proposed method performs very effectively and are advantageous in simple architecture, extracting easily the training data without expertise, adapting to the unstable system that the input-output properties of each products are slightly different, with a wide application to other similar adjustment processes.

  • PDF