• 제목/요약/키워드: Neural network prediction

검색결과 1,960건 처리시간 0.032초

AI 기법을 활용한 정수장 수질예측에 관한 연구 (Study on water quality prediction in water treatment plants using AI techniques)

  • 이승민;강유진;송진우;김주환;김형수;김수전
    • 한국수자원학회논문집
    • /
    • 제57권3호
    • /
    • pp.151-164
    • /
    • 2024
  • 상수도 공급을 위한 정수장에서 전염소 또는 중염소 공정이 도입된 수처리 공정의 염소농도 관리에 필요한 공정제어를 위하여 AI 기술을 활용한 수질예측 기법이 연구되고 있다. 본 연구에서는 정수장 수처리 공정에서 실시간으로 관측, 생산되고 있는 수량·수질자료를 이용하여 염소소독 공정제어 자동화를 목적으로 침전지 후단의 잔류염소 농도를 예측하기 위한 AI 기반 예측모형을 개발하였다. AI 기반 예측모형은 과거 수질 관측자료를 학습하여 이후 시점의 수질에 대한 예측이 가능한 기법으로, 복잡한 물리·화학·생물학적 수질모형과 달리 간단하고 효율적이다. 다중회귀 모형과 AI 기반 모형인 랜덤포레스트와 LSTM을 이용하여 정수장의 침전지 후단 잔류염소 농도를 예측하여 비교하였다. 최적의 잔류염소 농도 예측을 위한 AI 모형의 입출력 구조로는 침전지 전단의 잔류염소 농도, 침전지 탁도, pH, 수온, 전기전도도, 원수의 유입량, 알칼리도, NH3 등을 독립변수로, 예측하고자 하는 침전지 유출수의 잔류염소 농도를 종속변수로 선정하였다. 독립변수는 침전지 후단의 잔류염소에 영향이 있는 정수장에서 확보가 가능한 관측자료중에서 분석을 통해 선별하였으며, 분석 결과 연구대상 정수장인 정수장에서는 중회귀모형, 신경망모형, 모델트리 및 랜덤포레스트 모형을 비교한 결과 랜덤포레스트에 기반한 모형오차가 가장 낮게 도출되는 결과를 얻을 수 있었다. 본 연구에서 제시하는 침전지 후단의 적정 잔류염소 농도 예측값은 이전 처리단계에서 염소주입량의 실시간 제어가 가능토록 할 수 있어 수처리 효율 향상과 약품비 절감에 도움이 될 것으로 기대된다.

오프 폴리시 강화학습에서 몬테 칼로와 시간차 학습의 균형을 사용한 적은 샘플 복잡도 (Random Balance between Monte Carlo and Temporal Difference in off-policy Reinforcement Learning for Less Sample-Complexity)

  • 김차영;박서희;이우식
    • 인터넷정보학회논문지
    • /
    • 제21권5호
    • /
    • pp.1-7
    • /
    • 2020
  • 강화학습에서 근사함수로써 사용되는 딥 인공 신경망은 이론적으로도 실제와 같은 근접한 결과를 나타낸다. 다양한 실질적인 성공 사례에서 시간차 학습(TD) 은 몬테-칼로 학습(MC) 보다 더 나은 결과를 보여주고 있다. 하지만, 일부 선행 연구 중에서 리워드가 매우 드문드문 발생하는 환경이거나, 딜레이가 생기는 경우, MC 가 TD 보다 더 나음을 보여주고 있다. 또한, 에이전트가 환경으로부터 받는 정보가 부분적일 때에, MC가 TD보다 우수함을 나타낸다. 이러한 환경들은 대부분 5-스텝 큐-러닝이나 20-스텝 큐-러닝으로 볼 수 있는데, 이러한 환경들은 성능-퇴보를 낮추는데 도움 되는 긴 롤-아웃 없이도 실험이 계속 진행될 수 있는 환경들이다. 즉, 긴롤-아웃에 상관없는 노이지가 있는 네트웍이 대표적인데, 이때에는 TD 보다는 시간적 에러에 견고한 MC 이거나 MC와 거의 동일한 학습이 더 나은 결과를 보여주고 있다. 이러한 해당 선행 연구들은 TD가 MC보다 낫다고 하는 기존의 통념에 위배되는 것이다. 다시 말하면, 해당 연구들은 TD만의 사용이 아니라, MC와 TD의 병합된 사용이 더 나음을 이론적이기 보다 경험적 예시로써 보여주고 있다. 따라서, 본 연구에서는 선행 연구들에서 보여준 결과를 바탕으로 하고, 해당 연구들에서 사용했던 특별한 리워드에 의한 복잡한 함수 없이, MC와 TD의 밸런스를 랜덤하게 맞추는 좀 더 간단한 방법으로 MC와 TD를 병합하고자 한다. 본 연구의 MC와 TD의 랜덤 병합에 의한 DQN과 TD-학습만을 사용한 이미 잘 알려진 DQN과 비교하여, 본 연구에서 제안한 MC와 TD의 랜덤 병합이 우수한 학습 방법임을 OpenAI Gym의 시뮬레이션을 통하여 증명하였다.

관련 동영상 정보를 활용한 YouTube 가짜뉴스 탐지 기법 (Fake News Detection on YouTube Using Related Video Information)

  • 김준호;신용준;안현철
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.19-36
    • /
    • 2023
  • 정보통신기술의 발전으로 인해 누구나 쉽게 정보를 생산, 유포할 수 있게 되면서, 이를 악용하여 의도적으로 유포하는 거짓 정보인 가짜뉴스가 새로운 문제로 대두되기 시작하였다. 초기에 텍스트 방식으로 주로 전파되던 가짜뉴스는 점차 진화하여 이제는 멀티미디어 형식으로 퍼지고 있다. 유튜브는 2005년에 설립된 이후 세계 최고의 동영상 플랫폼으로 성장하면서 전 세계 사람들이 대부분 이용하고 있다. 하지만 유튜브는 가짜뉴스가 퍼지는 주요 창구가 되며 사회적인 문제를 일으키고 있다. 유튜브의 가짜뉴스를 탐지하기 위하여 다양한 학자들이 연구를 진행해 왔다. 가짜뉴스 탐지 연구에는 콘텐츠 기반의 접근과 배경정보 기반의 접근이 존재하는데 기존 가짜뉴스 연구와 유튜브의 가짜뉴스 탐지 연구를 살펴보면 콘텐츠 기반의 접근이 다수를 차지하고 있다. 본 연구에서는 콘텐츠 기반의 가짜뉴스 탐지가 아닌 배경정보 기반의 가짜뉴스 탐지기법을 제안하는데, 그 중에서도 유튜브에서 제공하는 관련 동영상 정보를 활용하여 가짜뉴스를 탐지하는 방법을 제안하고자 한다. 구체적으로 관련 동영상에서 얻은 정보와 원본 동영상에서 얻은 정보를 임베딩 기술인 Doc2vec을 이용하여 벡터화 한 후, 딥러닝 네트워크인 합성곱 신경망(CNN)을 통하여 가짜뉴스를 판별하고자 하였다. 실증분석 결과 제안 기법은 기존의 콘텐츠 기반으로 유튜브 가짜뉴스를 탐지하는 접근에 비해 보다 우수한 예측 성능을 보임을 확인하였다. 이러한 본 연구의 제안 기법은 파급력이 높은 유튜브 상에서 유포되는 가짜뉴스의 전파를 사전에 예방함으로써, 우리사회를 보다 안전하고 신뢰할 수 있도록 만드는데 기여할 수 있을 것으로 기대한다.

R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템 (An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis)

  • 이충석;이석주;최병구
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.79-96
    • /
    • 2012
  • 기술의 발전과 융합이 빠르게 이루어지고 있는 오늘날 유망기술을 어떻게 파악하여, 다양한 후보군들 중에서 최적의 R&D 대상을 어떻게 선정할 것인가에 대한 문제는 주요한 경영의사결정문제 중 하나로 부상하고 있다. 본 연구에서는 이러한 R&D 기술 선정 의사결정을 지원할 수 있는 새로운 지능형 의사결정지원시스템을 제안한다. 본 연구의 의사결정지원시스템은 크게 3가지 모듈로 구성되는데, 우선 첫 번째 모듈인 '기술가치 평가' 모듈에서는 기업이 관심을 갖고 있는 분야의 특허들을 분석하여 유망기술 파악에 요구되는 다양한 차원의 기술가치 평가지수 값들을 산출하는 작업이 이루어진다. 이를 통해, 현재 시점에서의 각 기술의 가치가 다양한 차원에서 평가가 이루어지고 나면, 두 번째 모듈인 '미래기술가치 예측' 모듈에서 이들의 시간 흐름에 따른 변화를 학습한 인공지능 모형을 토대로 각 후보기술들이 미래 시점에 어떤 가치지수값을 갖게 될 것인지 예측값을 산출하게 된다. 마지막 세 번째 모듈인 '최적 R&D 대상기술 선정 지원' 모듈에서는 앞서 두 번째 모듈에서 산출된 각 차원별 예상 가치지수값들을 적절히 가중합하여 기술의 종합적인 미래가치 예측값을 산출하여 의사결정자에게 제공하는 기능을 수행한다. 이를 통해 의사결정자가 자사에 적합한 최적의 R&D 대상기술을 선정할 수 있도록 하였다. 본 연구에서는 제안된 시스템의 적용 가능성을 검증하기 위해, 10년치 특허데이터에 인공신경망 기법을 적용하여 실제 기술가치 예측모형을 구축해 보고, 그 효과를 살펴본다.

합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로 (Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image)

  • 서이안;신경식
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.1-19
    • /
    • 2018
  • 최근 딥러닝은 오디오, 텍스트 및 이미지 데이터와 같은 비 체계적인 데이터를 대상으로 다양한 추정, 분류 및 예측 문제에 사용 및 적용되고 있다. 특히, 의류산업에 적용될 경우 딥러닝 기법을 활용한 의류 인식, 의류 검색, 자동 제품 추천 등의 심층 학습을 기반으로 한 응용이 가능하다. 이 때의 핵심모형은 합성곱 신경망을 사용한 이미지 분류이다. 합성곱 신경망은 입력이 전달되고 출력에 도달하는 과정에서 가중치와 같은 매개 변수를 학습하는 뉴런으로 구성되고, 영상 분류에 가장 적합한 방법론으로 사용된다. 기존의 의류 이미지 분류 작업에서 대부분의 분류 모형은 의류 이미지 자체 또는 전문모델 착용 의류와 같이 통제된 상황에서 촬영되는 온라인 제품 이미지를 사용하여 학습을 수행한다. 하지만 본 연구에서는 통제되지 않은 상황에서 촬영되고 사람들의 움직임과 다양한 포즈가 포함된 스트릿 패션 이미지 또는 런웨이 이미지를 분류하려는 상황을 고려하여 분류 모형을 훈련시키는 효과적인 방법을 제안한다. 이동성을 포착하는 런웨이 의류 이미지로 모형을 학습시킴으로써 분류 모형의 다양한 쿼리 이미지에 대한 적응력을 높일 수 있다. 모형 학습 시 먼저 ImageNet 데이터셋을 사용하여 pre-training 과정을 거치고 본 연구를 위해 수집된 32 개 주요 패션 브랜드의 2426개 런웨이 이미지로 구성된 데이터셋을 사용하여 fine-tuning을 수행한다. 학습 과정의 일반화를 고려해 10번의 실험을 수행하고 제안된 모형은 최종 테스트에서 67.2 %의 정확도를 기록했다. 본 연구 모형은 쿼리 이미지가 런웨이 이미지, 제품 이미지 또는 스트릿 패션 이미지가 될 수 있는 다양한 분류 환경에 적용될 수 있다. 구체적으로는 패션 위크에서 모바일 어플리케이션 서비스를 통해 브랜드 검색을 용이하게 하는 서비스를 제공하거나, 패션 잡지사의 편집 작업에 사용되어 브랜드나 스타일을 분류하고 라벨을 붙일 수 있으며, 온라인 쇼핑몰에서 아이템 정보를 제공하거나 유사한 아이템을 추천하는 등의 다양한 목적에 적용될 수 있다.

캐나다 Athabasca 오일샌드의 투수도 모델링을 위한 다양한 탄성파 속성들을 이용한 상 구분 향상 (Improvement in facies discrimination using multiple seismic attributes for permeability modelling of the Athabasca Oil Sands, Canada)

  • Kashihara, Koji;Tsuji, Takashi
    • 지구물리와물리탐사
    • /
    • 제13권1호
    • /
    • pp.80-87
    • /
    • 2010
  • 본 연구는 Athabasca 오일샌드광구의 역청 생산방법인, SAGD 수행에 영향을 주는 불균질한 유효투수도의 분포도를 만드는 저류층 모델링 작업 공정을 개발하기 위한 것이다. 암석학적 상 분포는 연구 지역 역청 저류층 내의 불균질성의 주요 원인이다. 대상 매질은 사암과 이암으로 구성된 하천에서 바다로 이어지는 채널로서 이암이 유체의 흐름을 방해해 유효 투수도를 감소시키고 있다. 본 연구에서는 암석학적 상등을 이암의 모양에 따라 마른 특성의 유효투수도를 갖는 세 종류로 분류하였다. 본 연구의 저류층 모델링 작업과정은 상 모델과 투수도 모델링, 두 가지 주요 모듈로 구성되어 있다. 상 모델링은 확률적인 접근을 이용하여 유효투수도 결정에 중요한, 세가지 상등 중에 어떤 종류에 속하는지를 알려준다. 투수도 모델링은 먼저 이암의 체적율을 구하고 그것을 유효투수도로 변환시킨다. 암석상들의 소형 모델에 대한 일련의 시뮬레이션 적용을 통해 이암 체적율을 유효투수도로 변환시키는 변환함수를 얻는다. 탄성파 자료는 지구통계학적 방법으로 상 모델링에 입력되는 상등의 우선 확률을 제공함으로써 상 모델링에 기여한다. 특히, 본 연구에서는 상들의 우선 확률을 개선하기 위해 상등의 예측 시 다양한 탄성파 속성들을 복합적으로 사용하는 신경망 방법을 이용하였다. 상 구분에 있어서의 얼마만큼 개선되었는지를 보여주기 위해 상 모델링 시 개선된 우선 확률을 사용한 결과를 단일 탄성파 속성을 이용하는 기존 방법의 결과와 비교하였다. 다중 탄성파 속성들의 복합적인 사용에서 밀도와 P파 속도를 조합해서 이용하는 것이 상구분을 향상시키는데 필수적이다. 또한 본 연구에서는 검층으로부터 얻은 공극률과 P파 속도, 사진찍은 것 같이 예측된 이암의 부피를 이용하여 sand matrix의 공극률이 정확하게 평가원 연구지역에서, 다른 상등 사이에서 P파 속도가 달라지게 하는 sand matrix의 공극률에 대해서도 논의하였다.

머신러닝 기법의 산림 총일차생산성 예측 모델 비교 (Predicting Forest Gross Primary Production Using Machine Learning Algorithms)

  • 이보라;장근창;김은숙;강민석;천정화;임종환
    • 한국농림기상학회지
    • /
    • 제21권1호
    • /
    • pp.29-41
    • /
    • 2019
  • 산림생태계에서 총일차생산성(Gross Primary Production, GPP)은 기후변화에 따른 산림의 생산성과 그에 영향을 미치는 식물계절, 건강성, 탄소 순환 등을 대표하는 지표이다. 총일차생산성을 추정하기 위해서는 에디공분산 타워 자료나 위성영상관측자료를 이용하기도 하고 물리지형적 한계나 기후변화 등을 고려하기 위해 기작기반모델링을 활용하기도 한다. 그러나 총일차생산성을 포함한 산림 탄소 순환의 기작기반 모델링은 식물의 생물, 생리, 화학적 기작들의 반응과 지형, 기후 및 시간 등과 같은 환경 조건들이 복잡하게 얽혀 있어 비선형적이고 유연성이 떨어져 반응에 영향을 주는 조건들을 모두 적용하기가 어렵다. 본 연구에서는 산림 생산성 추정 모델을 에디공분산 자료와 인공위성영상 정보를 사용하여 기계학습 알고리즘을 사용한 모델들로 구축해 보고 그 사용 및 확장 가능성을 검토해 보고자 하였다. 설명변수들로는 에디공분산자료와 인공위성자료에서 나온 대기기상인자들을 사용하였고 검증자료로 에디공분산 타워에서 관측된 총일차생산성을 사용하였다. 산림생산성 추정 모델은 1) 에디공분산 관측 기온($T_{air}$), 태양복사($R_d$), 상대습도(RH), 강수(PPT), 증발산(ET) 자료, 2) MODIS 관측 기온(T), 일사량($R_{sd}$), VPD 자료(개량식생지수 제외), 3) MODIS 관측 기온(T), 일사량($R_{sd}$), VPD, 개량식생지수(EVI) 자료를 사용하는 세 가지 경우로 나누어 구축하여 2006 - 2013년 자료로 훈련시키고 2014, 2015년 자료로 검증하였다. 기계학습 알고리즘은 support vector machine (SVM), random forest (RF), artificial neural network (ANN)를 사용하였고 단순 비교를 위해 고전적 방법인 multiple linear regression model (LM)을 사용하였다. 그 결과, 에디공분산 입력자료로 훈련시킨 모델의 예측력은 피어슨 상관계수 0.89 - 0.92 (MSE = 1.24 - 1.62), MODIS 입력자료로 훈련시킨 모델의 예측력은 개량식생지수 제외된 모델은 0.82 - 0.86 (MSE = 1.99 - 2.45), 개량식생지수가 포함된 모델은 0.92 - 0.93(MSE = 1.00 - 1.24)을 보였다. 이러한 결과는 산림총일차생산성 추정 모델 구축에 있어 MODIS인공위성 영상 정보 기반으로 기계학습 알고리즘을 사용하는 것에 대한 높은 활용가능성을 보여주었다.

기계학습을 활용한 특허수명 예측 및 영향요인 분석 (Prediction of patent lifespan and analysis of influencing factors using machine learning)

  • 김용우;김민구;김영민
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.147-170
    • /
    • 2022
  • 특허의 사적 가치(private value)를 나타내는 특허수명 추정은 오래전부터 연구되었으나 추정과정에서 선형모델에 의존하는 경우가 대부분이었고, 기계학습 방법을 사용하더라도 변수 간 관계에 대한 해석이나 설명이 부족하였다. 본 연구에서는 특허의 생존 기간이 특허의 가치를 대리한다는 기존 연구결과를 바탕으로 특허 등록 이후의 생존 기간(연장횟수) 예측을 통해 특허의 가치를 추정한다. 이를 위해 1996~2017년까지 미국 특허청(USPTO)에 출원하여 등록된 특허 4,033,414개를 수집하였다. 특허수명을 예측하기 위해 기존 연구에서 특허수명에 영향을 미친다고 밝혀진 특허의 특성, 특허의 소유자 특성, 특허의 발명가 특성을 반영할 수 있는 다양한 변수가 사용되었다. 서로 다른 4개의 모델(Ridge Regression, Random Forest, Feed-forward Neural Network, Gradient Boosting Models)을 생성하고, 모델 학습 과정에서는 5-fold Cross Validation으로 초매개변수 조정이 이루어졌다. 이후 생성된 모델의 성능을 평가하고 특허수명을 추정할 수 있는 예측변수의 상대적 중요도를 제시하였다. 또한, 성능이 우수했던 Gradient Boosting Model을 기반으로 Accumulated Local Effects Plot을 제시하여 예측변수와 특허수명 간 관계를 시각적으로 나타내었다. 마지막으로 모델에 의해서 평가된 개별 특허의 평가 근거를 제시하기 위하여 Kernal SHAP(SHapley Additive exPlanations)을 적용하고 특허평가 시스템에의 적용 가능성을 제시한다. 본 연구는 기존에 특허수명을 추정하는 연구에 누적적으로 기여한다는 점 그리고 선형성을 바탕으로 진행된 기존 특허수명 추정 연구들의 한계를 보완하고 복잡한 비선형 관계를 설명가능한 방식으로 제시하였다는 점에서 학문적 의의가 있다. 또한, 개별 특허의 평가 근거를 도출하는 방법을 소개하고 특허평가 시스템에의 적용 가능성을 제시하였다는 점에서 실무적 의의가 있다.

중소제조기업의 부실예측모형 비교연구 (A Comparative Study on Failure Pprediction Models for Small and Medium Manufacturing Company)

  • 황보윤;문종건
    • 벤처창업연구
    • /
    • 제11권3호
    • /
    • pp.1-15
    • /
    • 2016
  • 본 연구는 코스닥 시장에 상장 폐지된 중소제조기업의 재무자료를 이용하여 다변량 판별분석모형, 로지스틱회귀분석모형 그리고 인공신경망분석모형을 구축하고 이들의 예측력을 비교분석하였다. 표본기업은 2009년에서 2012년까지 상장 폐지된 83개의 부실기업과 83개의 정상기업 총166개사로 정하였다. 166개사 중에서 무작위로 부실기업50개사와 정상기업 50개사 총100개사를 선정하여 훈련용 표본(training data)으로 모형을 구축하는데 사용하였다. 나머지 66개사는 모형의 예측성과를 평가하기 위하여 검증용 표본(test data)으로 사용하였다. 과거 5년 동안의 재무비율 79개 자료로 T-test를 실시하여 5년 연속 유의미한 변수 9개를 선정하고 각각의 모형을 구축하였다. T-test 결과, 부실초기에는 주로 수익성지표들이 부실예측에 주요 변수로 나타났으며 부실 후반에 가면서 안정성지표와 현금흐름지표들이 추가로 유의미한 변수로 나타났다. 모형의 예측력을 비교해 보면 훈련용 표본의 경우, 로지스틱회귀분석모형이 가장 높은 분류 정확도를 보였고, 검증용 표본의 경우에는 인공신경망모형이 가장 높은 분류 정확도를 보였다. 본 연구는 첫째, 부실이 서서히 진행된다는 점을 감안하여 T-test를 실시하여 5년 연속 유의미한 변수로 모형을 구축하여 변수의 시계열적인 측면이 고려되었다는 점과, 둘째, 기존 선행 연구들이 정규성을 무시하고 판별분석모형을 구축하였으나, 본 연구가 정규성 여부를 검정하고 모형을 구축하였다는 점이 차별화된다. 본 연구에 따른 정책적 시사점은 부실기업의 징후는 본 논문에서처럼 대체로 재무제표에 나타나기 때문에 회사에 대한 공시서류의 신회성 확보가 중요하다. 따라서 이런 점에서 회계법인 혹은 세무기장 종사자들의 도덕적 해이을 억제할 수 있는 제도적 장치가 강화되어야 할 것이다.

  • PDF

데이터마이닝 기법을 활용한 비외감기업의 부실화 유형 분석 (The Pattern Analysis of Financial Distress for Non-audited Firms using Data Mining)

  • 이수현;박정민;이형용
    • 지능정보연구
    • /
    • 제21권4호
    • /
    • pp.111-131
    • /
    • 2015
  • 본 연구에서는 데이터마이닝 기법의 일종인 자기조직화지도(Self-Organizing Map, SOM)를 이용하여 비외감기업의 부실화 유형을 구분하고자 한다. 자기조직화지도는 인공 신경망을 기초로 자율학습을 통해 입력된 값을 유사한 군집끼리 묶어내는 방법으로, 기존의 통계적 군집 분류 방법보다 성능이 뛰어나고, 고차원의 입력데이터를 저차원으로 시각화할 수 있다는 장점 때문에 다양한 분야에서 각광받고 있다. 본 연구에서는 기존 연구의 주요 분석대상이었던 외감기업에 비해 부실화 빈도는 높지만 데이터 수집의 어려움으로 인해 분석대상에서 다소 제외되었던 비외감기업의 부실화 유형에 대해 알아보고, 유형별 구체적인 사례도 소개하고자 한다. 재무자료수집이 가능한 100개의 비외감 부실기업에 대해 분석한 결과, 비외감기업의 부실화 유형은 다섯 가지로 구분되었다. 유형 1은 전체 집단의 약 12%를 차지하며, 수익성, 성장성 등 재무지표가 다른 유형에 비해 열등하였다. 유형 2는 전체 집단의 약 14%로, 유형 1보다는 덜 심각하지만 재무지표가 대체로 열등하였다. 유형 3은 성장성 지표가 열등한 그룹으로 기업간 경쟁이 극심한 가운데 지속적으로 성장하지 못하고 부실화된 경우로 약 30%의 기업이 포함되었다. 유형 4는 성장성은 탁월하나 부채경영 등 과감한 경영으로 인해 유동성 부족이나 현금부족 등의 이유로 부실화된 그룹으로 약 25%의 기업이 포함되었다. 유형 5는 거의 모든 재무지표가 우수한 건전기업으로, 단기적인 경영전략의 실수 또는 중소기업의 특성상 경영자의 개인적 사정으로 부실화 되었을 가능성이 큰 그룹으로 약 18%의 기업이 포함되었다. 본 연구 결과는 부실화 유형을 구분하는데 기존의 통계적 방법이 아닌 자기조직화지도를 이용하였다는 점에서 학문적 의의가 있고, 비외감기업의 재무지표만으로도 1차적인 부실화 징후를 발견할 수 있다는 점에서 실무적 의의가 있다고 할 수 있다.