• 제목/요약/키워드: Neural network prediction

검색결과 1,960건 처리시간 0.033초

Comparative Analysis of PM10 Prediction Performance between Neural Network Models

  • Jung, Yong-Jin;Oh, Chang-Heon
    • Journal of information and communication convergence engineering
    • /
    • 제19권4호
    • /
    • pp.241-247
    • /
    • 2021
  • Particulate matter has emerged as a serious global problem, necessitating highly reliable information on the matter. Therefore, various algorithms have been used in studies to predict particulate matter. In this study, we compared the prediction performance of neural network models that have been actively studied for particulate matter prediction. Among the neural network algorithms, a deep neural network (DNN), a recurrent neural network, and long short-term memory were used to design the optimal prediction model using a hyper-parameter search. In the comparative analysis of the prediction performance of each model, the DNN model showed a lower root mean square error (RMSE) than the other algorithms in the performance comparison using the RMSE and the level of accuracy as metrics for evaluation. The stability of the recurrent neural network was slightly lower than that of the other algorithms, although the accuracy was higher.

Displacement prediction in geotechnical engineering based on evolutionary neural network

  • Gao, Wei;He, T.Y.
    • Geomechanics and Engineering
    • /
    • 제13권5호
    • /
    • pp.845-860
    • /
    • 2017
  • It is very important to study displacement prediction in geotechnical engineering. Nowadays, the grey system method, time series analysis method and artificial neural network method are three main methods. Based on the brief introduction, the three methods are analyzed comprehensively. Their merits and demerits, applied ranges are revealed. To solve the shortcomings of the artificial neural network method, a new prediction method based on new evolutionary neural network is proposed. Finally, through two real engineering applications, the analysis of three main methods and the new evolutionary neural network method all have been verified. The results show that, the grey system method is a kind of exponential approximation to displacement sequence, and time series analysis is linear autoregression approximation, while artificial neural network is nonlinear autoregression approximation. Thus, the grey system method can suitably analyze the sequence, which has the exponential law, the time series method can suitably analyze the random sequence and the neural network method almostly can be applied in any sequences. Moreover, the prediction results of new evolutionary neural network method is the best, and its approximation sequence and the generalization prediction sequence are all coincided with the real displacement sequence well. Thus, the new evolutionary neural network method is an acceptable method to predict the measurement displacements of geotechnical engineering.

조기학습정지를 이용한 원전 SG세관 결함크기 예측 신경회로망의 성능 향상 (A performance improvement of neural network for predicting defect size of steam generator tube using early stopping)

  • 조남훈
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.2095-2101
    • /
    • 2008
  • In this paper, we consider a performance improvement of neural network for predicting defect size of steam generator tube using early stopping. Usually, neural network is trained until MSE becomes less than a prescribed error goal. The smaller the error goal, the greater the prediction performance for the trained data. However, as the error goal is decreased, an over fitting is likely to start during supervised training of a neural network, which usually deteriorates the generalization performance. We propose that, for the prediction of an axisymmetric defect size, early stopping can be used to avoid the over-fitting. Through various experiments on the axisymmetric defect samples, we found that the difference bet ween the prediction error of neural network based on early stopping and that of ideal neural network is reasonably small. This indicates that the error goal used for neural network training for the prediction of defect size can be efficiently selected by early stopping.

Bayesian Neural Network with Recurrent Architecture for Time Series Prediction

  • Hong, Chan-Young;Park, Jung-Hun;Yoon, Tae-Sung;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.631-634
    • /
    • 2004
  • In this paper, the Bayesian recurrent neural network (BRNN) is proposed to predict time series data. Among the various traditional prediction methodologies, a neural network method is considered to be more effective in case of non-linear and non-stationary time series data. A neural network predictor requests proper learning strategy to adjust the network weights, and one need to prepare for non-linear and non-stationary evolution of network weights. The Bayesian neural network in this paper estimates not the single set of weights but the probability distributions of weights. In other words, we sets the weight vector as a state vector of state space method, and estimates its probability distributions in accordance with the Bayesian inference. This approach makes it possible to obtain more exact estimation of the weights. Moreover, in the aspect of network architecture, it is known that the recurrent feedback structure is superior to the feedforward structure for the problem of time series prediction. Therefore, the recurrent network with Bayesian inference, what we call BRNN, is expected to show higher performance than the normal neural network. To verify the performance of the proposed method, the time series data are numerically generated and a neural network predictor is applied on it. As a result, BRNN is proved to show better prediction result than common feedforward Bayesian neural network.

  • PDF

Emotion prediction neural network to understand how emotion is predicted by using heart rate variability measurements

  • Park, Sung Soo;Lee, Kun Chang
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권7호
    • /
    • pp.75-82
    • /
    • 2017
  • Correct prediction of emotion is essential for developing advanced health devices. For this purpose, neural network has been successfully used. However, interpretation of how a certain emotion is predicted through the emotion prediction neural network is very tough. When interpreting mechanism about how emotion is predicted by using the emotion prediction neural network can be developed, such mechanism can be effectively embedded into highly advanced health-care devices. In this sense, this study proposes a novel approach to interpreting how the emotion prediction neural network yields emotion. Our proposed mechanism is based on HRV (heart rate variability) measurements, which is based on calculating physiological data out of ECG (electrocardiogram) measurements. Experiment dataset with 23 qualified participants were used to obtain the seven HRV measurement such as Mean RR, SDNN, RMSSD, VLF, LF, HF, LF/HF. Then emotion prediction neural network was modelled by using the HRV dataset. By applying the proposed mechanism, a set of explicit mathematical functions could be derived, which are clearly and explicitly interpretable. The proposed mechanism was compared with conventional neural network to show validity.

시계열 자료의 예측을 위한 베이지안 순환 신경망에 관한 연구 (A Study on the Bayesian Recurrent Neural Network for Time Series Prediction)

  • 홍찬영;박정훈;윤태성;박진배
    • 제어로봇시스템학회논문지
    • /
    • 제10권12호
    • /
    • pp.1295-1304
    • /
    • 2004
  • In this paper, the Bayesian recurrent neural network is proposed to predict time series data. A neural network predictor requests proper learning strategy to adjust the network weights, and one needs to prepare for non-linear and non-stationary evolution of network weights. The Bayesian neural network in this paper estimates not the single set of weights but the probability distributions of weights. In other words, the weights vector is set as a state vector of state space method, and its probability distributions are estimated in accordance with the particle filtering process. This approach makes it possible to obtain more exact estimation of the weights. In the aspect of network architecture, it is known that the recurrent feedback structure is superior to the feedforward structure for the problem of time series prediction. Therefore, the recurrent neural network with Bayesian inference, what we call Bayesian recurrent neural network (BRNN), is expected to show higher performance than the normal neural network. To verify the proposed method, the time series data are numerically generated and various kinds of neural network predictor are applied on it in order to be compared. As a result, feedback structure and Bayesian learning are better than feedforward structure and backpropagation learning, respectively. Consequently, it is verified that the Bayesian reccurent neural network shows better a prediction result than the common Bayesian neural network.

Gamma 다층 신경망을 이용한 비선형 적응예측 (Nonlinear Prediction using Gamma Multilayered Neural Network)

  • 김종인;고일환;최한고
    • 융합신호처리학회논문지
    • /
    • 제7권2호
    • /
    • pp.53-59
    • /
    • 2006
  • 동적 신경망은 시스템 식별과 신호예측과 같이 temporal 신호처리가 요구되는 여러 분야에서 적용되어 왔다. 본 논문에서는 신경망의 동특성을 향상시키기 위해 순방향 다층 신경망의 히든 층에 감마(Gamma) 메모리 커넬을 사용하는 감마 신경망(GAM)을 제안하고, 적응필터로 제안된 신경망을 사용하여 비선형 적응예측을 다루고 있다. 제안된 신경망은 비선형 신호예측을 통해 평가되었으며, 예측성능의 상대적인 비교를 위해 순방향 신경망(FNN)과 리커런트 신경망(RNN)과 비교하였다. 시뮬레이션 결과에 의하면 GAM 신경망은 수렴속도와 예측의 정확도에서 이러한 신경망보다 더 우수한 동작을 수행함으로써, 제안된 신경망이 기존의 다층 신경망보다 비정적 신호에 대한 비선형 예측에 더 효과적인 예측모델임을 확인하였다.

  • PDF

신경망을 이용한 열간 압연하중 예측용 탄소당량식의 개발 (Determination of Carbon Equivalent Equation by Using Neural Network for Roll Force Prediction in hot Strip Mill)

  • 김필호;문영훈;이준정
    • 소성∙가공
    • /
    • 제6권6호
    • /
    • pp.482-488
    • /
    • 1997
  • New carbon equivalent equation for the better prediction for the better prediction of roll force in a continuous hot strip mill has been formulated by applying a neural network method. In predicting roll force of steel strip, carbon equivalent equation which normalize the effects of various alloying elements by a carbon equivalent content is very critical for the accurate prediction of roll force. To overcome the complex relationships between alloying elements and operational variables such as temperature, strain, strain rate and so forth, a neural network method which is effective for multi-variable analysis was adopted in the present work as a tool to determine a proper carbon equivalent equation. The application of newly formulated carbon equivalent equation has increased prediction accuracy of roll force significantly and the effectiveness of neural network method is well confirmed in this study.

  • PDF

Pipeline wall thinning rate prediction model based on machine learning

  • Moon, Seongin;Kim, Kyungmo;Lee, Gyeong-Geun;Yu, Yongkyun;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4060-4066
    • /
    • 2021
  • Flow-accelerated corrosion (FAC) of carbon steel piping is a significant problem in nuclear power plants. The basic process of FAC is currently understood relatively well; however, the accuracy of prediction models of the wall-thinning rate under an FAC environment is not reliable. Herein, we propose a methodology to construct pipe wall-thinning rate prediction models using artificial neural networks and a convolutional neural network, which is confined to a straight pipe without geometric changes. Furthermore, a methodology to generate training data is proposed to efficiently train the neural network for the development of a machine learning-based FAC prediction model. Consequently, it is concluded that machine learning can be used to construct pipe wall thinning rate prediction models and optimize the number of training datasets for training the machine learning algorithm. The proposed methodology can be applied to efficiently generate a large dataset from an FAC test to develop a wall thinning rate prediction model for a real situation.

균등다층연산 신경망을 이용한 금융지표지수 예측에 관한 연구 (The Study of the Financial Index Prediction Using the Equalized Multi-layer Arithmetic Neural Network)

  • 김성곤;김환용
    • 한국컴퓨터정보학회논문지
    • /
    • 제8권3호
    • /
    • pp.113-123
    • /
    • 2003
  • 본 논문에서는 주식의 종가, 거래량 기술적 지표인 MACD(Moving Average Convergence Divergence) 값과 투자 심리선값을 입력 패턴으로 사용하여 개별 금융지표지수에 대한 매도, 중립 및 매수 시점 예측을 수행하는 신경망 모델이 제안된다. 이 모델은 역전파 알고리즘을 이용한 시계열 예측 기능과 균등다층연산 기능을 갖는다. 학습 데이터의 수가 각 범주들(매도, 중립, 매수)에 균일하게 분포되어 있지 않을 경우 기존의 신경망은 가장 우세한 범주의 예측 정확성만을 향상시키는 문제점을 가지고 있다. 따라서, 본 논문에서는 신경망의 구조, 동작, 학습 알고리즘에 대해 표현한 후 다른 범주의 예측 정확성도 향상시키기 위해 각 범주의 중요성을 이용하여 학습 데이터의 수를 조절하는 균등다층연산 방법을 제안한다. 실험 결과, 균등다층연산 신경망을 이용한 금융지표지수 예측 방법이 기존의 신경망을 이용한 금융지표지수 예측 방법 보다 각 범주에 대해 높은 정확성 비율을 보임을 확인할 수 있었다.

  • PDF