• Title/Summary/Keyword: Neural network modeling

Search Result 755, Processing Time 0.034 seconds

Adaptive Neural Network Control for Robot Manipulators

  • Lee, Min-Jung;Choi, Young-Kiu
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.43-50
    • /
    • 2002
  • In the recent years neural networks have fulfilled the promise of providing model-free learning controllers for nonlinear systems; however, it is very difficult to guarantee the stability and robustness of neural network control systems. This paper proposes an adaptive neural network control for robot manipulators based on the radial basis function netwo.k (RBFN). The RBFN is a branch of the neural networks and is mathematically tractable. So we adopt the RBFN to approximate nonlinear robot dynamics. The RBFN generates control input signals based on the Lyapunov stability that is often used in the conventional control schemes. The saturation function is also chosen as an auxiliary controller to guarantee the stability and robustness of the control system under the external disturbances and modeling uncertainties.

  • PDF

Performance comparison of various deep neural network architectures using Merlin toolkit for a Korean TTS system (Merlin 툴킷을 이용한 한국어 TTS 시스템의 심층 신경망 구조 성능 비교)

  • Hong, Junyoung;Kwon, Chulhong
    • Phonetics and Speech Sciences
    • /
    • v.11 no.2
    • /
    • pp.57-64
    • /
    • 2019
  • In this paper, we construct a Korean text-to-speech system using the Merlin toolkit which is an open source system for speech synthesis. In the text-to-speech system, the HMM-based statistical parametric speech synthesis method is widely used, but it is known that the quality of synthesized speech is degraded due to limitations of the acoustic modeling scheme that includes context factors. In this paper, we propose an acoustic modeling architecture that uses deep neural network technique, which shows excellent performance in various fields. Fully connected deep feedforward neural network (DNN), recurrent neural network (RNN), gated recurrent unit (GRU), long short-term memory (LSTM), bidirectional LSTM (BLSTM) are included in the architecture. Experimental results have shown that the performance is improved by including sequence modeling in the architecture, and the architecture with LSTM or BLSTM shows the best performance. It has been also found that inclusion of delta and delta-delta components in the acoustic feature parameters is advantageous for performance improvement.

Dynamic analysis of short circulation with OPR prediction used neural network (Neural network을 이용한 OPR예측과 short circulation 동특성 분석)

  • Jeon, Jun-Seok;Yeo, Yeong-Gu;Park, Si-Han;Gang, Hong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2004.04a
    • /
    • pp.86-96
    • /
    • 2004
  • Identification of dynamics of short circulation during grade change operations in paper mills is very important for the effective plant operation. In the present study a prediction method of One Pass Retention(OPR) is proposed based on the neural network. The present method is used to analyze the dynamics of short circulation during grade change. Properties of the product paper largely depend upon the change in the OPR. In the present study the OPR is predicted from the training of the network by using grade change operation data. The results of the prediction are applied to the modeling equation to give flow rates and consistencies of short circulation.

  • PDF

Design of Initial Billet using the Artificial Neural Network for a Hot Forged Product (신경망을 이용한 열간단조품의 초기 소재 설계)

  • 김동진;김벙민;최재찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.198-203
    • /
    • 1995
  • In the paper, we have proposed a new technique to detemine the initial billet for the forged products using a function approximation in neural network. A three-layer neural network is used and a back propagation algorithm is employed totrain the network. An optimal billet which satisfied the forming limitation, minimum of incomplete filling in the die cavity, load and energyas well as more uniform distribution of effective strain, is determined by applying the ability of function approximation of te neural network. The amount of incomplete filling in the die, load and forming energyas well as effective strain are measured by the rigid-plastic finite element method. The new technique is applied tofind the optimal billet size for the axisymmetric rib-web product in hot forging. This would reduce the number of finite element simulation for determing the optimal billet of forging products, further it is usefully adapted to physical modeling for the forging design.

  • PDF

Effective Measurement and modeling of memory effects in Power Amplifier (RF 전력 증폭기 메모리 효과의 효율적인 측정과 모델링 기법)

  • Kim, Won-Ho;HwangBo, Hoon;Nah, Wan-Soo;Park, Cheon-Seok;Kim, Byung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.261-264
    • /
    • 2004
  • In this paper, we identify the memory effect of high power(125W) laterally diffused metal oxide-semiconductor(LDMOS) RF Power Amplifier(PA) by two tone IMD measurement. We measure two tone IMD by changing the tone spacing and the power level. Different asymmetric IMD is founded at different center frequency measurements. We propose the Tapped Delay Line-Neural Network(TDNN) technique as the modeling method of LDMOS PA based on two tone IMD data. TDNN's modeling accuracy is highly reasonable compared to the memoryless adaptive modeling method.

  • PDF

Static Load Modeling Based on Artificial Neural Network and Harmonics (고조파를 고려한 신경회로망 기반의 정태부하모델링)

  • Lee, Jong-Pil;Kim, Sung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.2
    • /
    • pp.65-71
    • /
    • 2013
  • Nonlinear loads with harmonics exist in an actual power system where harmonic currents make voltage distortion. The sum of reactive power measured at individual load is different from the measured reactive power at a bus in a power system with linear and non-linear loads. In this study, ANN(artificial neural network) load modeling technique with consideration of harmonics is introduced for more accurate component load modeling and an impact coefficient is proposed for aggregation of component loads. Results of this research show more accurate load modeling method. Since precise data for power system analysis can be acquired, the proposed method will be used for power system planning and maintenance.

A Study on the Symmetric Neural Networks and Their Applications (대칭 신경회로망과 그 응용에 관한 연구)

  • 나희승;박영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1322-1331
    • /
    • 1992
  • The conventional neural networks are built without considering the underlying structure of the problems. Hence, they usually contain redundant weights and require excessive training time. A novel neural network structure is proposed for symmetric problems, which alleviate some of the aforementioned drawback of the conventional neural networks. This concept is expanded to that of the constrained neural network which may be applied to general structured problems. Because these neural networks can not be trained by the conventional training algorithm, which destroys the weight structure of the neural networks, a proper training algorithm is suggested. The illustrative examples are shown to demonstrate the applicability of the proposed idea.

Unsupervised learning control using neural networks (신경 회로망을 이용한 무감독 학습제어)

  • 장준오;배병우;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1017-1021
    • /
    • 1991
  • This paper is to explore the potential use of the modeling capacity of neural networks for control applications. The tasks are carried out by two neural networks which act as a plant identifier and a system controller, respectively. Using information stored in the identification network control action has been developed. Without supervising control signals are generated by a gradient type iterative algorithm.

  • PDF

A study on deburring task of robot arm using neural network (신경망을 이용한 ROBOT ARM의 디버링(Deburring) 작업에 관한 연구)

  • 주진화;이경문;이장명
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.139-142
    • /
    • 1996
  • This paper presents a method of controlling contact force for deburring tasks. The cope with the nonlinearities and time-varying properties of the robot and the environment, a neural network control theory is applied to design the contact force control system. We show that the contact force between the hand and the contacting surface can be controlled by adjusting the command velocity of a robot hand, which is accomplished by the modeling of a robot and the environment as Mass-Spring-Damper system. Simulation results are shown.

  • PDF

A neural network controller based on forward modeling and indirect learning (순방향 모델링과 간접학습에 의한 신경망제어기)

  • 이부환;이인수;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.218-223
    • /
    • 1992
  • This paper describes a learning method of neural network controllers. The learning method improves the performance of indirect learning mechanism in the neuro-control of nonlinear systems. To precisely identify dynamic characteristics of the plant by utilizing a limited prior information we propose a new energy function which takes advantage of the proportional relationship between outputs of the plant and those of neural networks.

  • PDF