• Title/Summary/Keyword: Neural network control

Search Result 2,587, Processing Time 0.03 seconds

Intelligent Control Design of Mobile robot Using Neural-Fuzzy Control Method (뉴럴-퍼지 제어기법에 의한 이동로봇의 지능제어기 설계)

  • 한성현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.62-67
    • /
    • 2002
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized loaming architecture. It is Proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tucking of the speed and azimuth of a mobile robot driven by two independent wheels.

A Precision Control of Wheeled Mobile Robots Using Neural Network (신경회로망을 이용한 이동로봇의 정밀 제어)

  • Kim, Moo-Jon;Lee, Young-Jin;Park, Sung-Jun;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.689-696
    • /
    • 2000
  • In this paper we propose an eminent controller for wheeled mobile robots. This controller consists of an input-output linearization controller trying to stabilize the system and a neural network controller to compensate for uncertainties. The uncertainties are divided into two parts. First unstructured uncertainties include the elements related with system order such as friction disturbance. Second structure uncertainties are the incorrect system parameters A neural network structure of the proposed overall controller learns structural errors of the wheeled mobile robots with uncertainties and includes the neural network output. This controller learns quickly the model and has good tracking performance Simulation results show that the proposed controller is more efficient than analog controllers.

  • PDF

Self-tuning optimal control of an active suspension using a neural network

  • Lee, Byung-Yun;Kim, Wan-Il;Won, Sangchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.295-298
    • /
    • 1996
  • In this paper, a self-tuning optimal control algorithm is proposed to retain the optimal performance of an active suspension system, when the vehicle has some time varying parameters and parameter uncertainties. We consider a 2 DOF time-varying quarter car model which has the parameter variation of sprung mass, suspension spring constant and suspension damping constant. Instead of solving algebraic riccati equation on line, we propose a neural network approach as an alternative. The optimal feedback gains obtained from the off line computation, according to parameter variations, are used as the neural network training data. When the active suspension system is on, the parameters are identified by the recursive least square method and the trained neural network controller designer finds the proper optimal feedback gains. The simulation results are represented and discussed.

  • PDF

High Performance of Induction Motor Drive with HAl Controller (HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어)

  • Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.570-572
    • /
    • 2005
  • This paper is proposed adaptive hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

Control Method of on Unknown Nonlinear System Using Dynamical Neural Network (동적 신경회로망을 이용한 미지의 비선형 시스템 제어 방식)

  • 정경권;김영렬;정성부;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.494-497
    • /
    • 2002
  • In this paper, we proposed a control method of an unknown nonlinear system using a dynamical neural network. The proposed method performs for a nonlinear system with unknown system, identification with using the dynamical neural network, and then a nonlinear adaptive controller is designed with these identified informations. In order to verify the effectiveness of the proposed method, we simulated one-link manipulator. The simulation results showed the effectiveness of using the dynamical neural network in the adaptive control of one-link manipulator.

  • PDF

The Study on Position Control of Nonlinear System Using Wavelet Neural Network Controller (웨이블렛 신경회로망 제어기를 이용한 비선형 시스템의 위치 제어에 관한 연구)

  • Lee, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2365-2370
    • /
    • 2008
  • In this paper, applications of wavelet neural network controller to position control of nonlinear system are considered. Wavelet neural network is used in the objectives which improve the efficiency of LQR controllers. It is possible to make unstable nonlinear systems stable by using LQR(Linear Quadratic Regulator) technique. And, in order to be adapted to disturbance effectively in this system it uses wavelet neural network controller. Applying this method to the position control of nonlinear system, its usefulness is verified from the results of experiment.

Control of Nonlinear System using WAVENET (WAVENET을 이용한 비선형 시스템의 제어)

  • Park, Doo-Hwan;Kim, Kyung-Yup;Lee, Joon-Tark
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.257-261
    • /
    • 2005
  • The helicopter system is non-linear and complex. Futhermore, because of absence of accurate mathematical model, it is difficult accurately to control its attitude. therefore, we propose a WAVENET control technique to control efficiently its elevation angle and azimuth one. Wavelet neural network(WAVENET) can construct systematically initial neural network as applying wavelet theory to feedforward network. It is proved through computer simulation that WAVENET has more excellent approximation capability than existing neural network. The simulation results using MATLAB are introduced.

  • PDF

Active Control of Structures Using Lattice Probabilistic Neural Network (격자 확률신경망 기법을 이용한 구조물의 능동 제어)

  • Kim, Dong-Hyawn;Chang, Seong-Kyu;Kwon, Soon-Duck;Kim, Doo-Kie
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.662-667
    • /
    • 2007
  • A new neuro-control scheme for active control of structures is proposed. It utilizes lattice pattern of state vector as training data of probabilistic neural network(PNN). Therefore. it is the so-called lattice probabilistic neural network(LPNN). PNN makes control forces by using all the training patterns. Therefore, it takes much time to obtain a control force in application. This inevitably may delay the control action. However. control force of LPNN is calculated by using only the adjacent information of LPNN input. So, the response of LPNN is greatly faster than PNN. The proposed control algorithm is applied for three story building under California and El Centro earthquakes. Also, control results of the LPNN are compared with those of the conventional PNN. The structural responses have been suppressed effectively by the proposed algorithm.

Real-Time Fuzzy Neural Network Control for Real-Time Autonomous Cruise of Mobile Robot (자율주행 이동로봇의 실시간 퍼지신경망 제어)

  • 정동연;김종수;한성현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.155-162
    • /
    • 2003
  • We propose a new technique far real-tine controller design of a autonomous cruise mobile robot with three drive wheels. The proposed control scheme uses a Caussian function as a unit function in the fuzzy neural network. and a back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-foray. The control performance of the proposed controller is illustrated by performing the computer simulation for trajectory tracking of the speed and azimuth of a autonomous cruise mobile robot driven by three independent wheels.

The MPPT of Photovoltaic Solar System by Controlled Boost Converter with Neural Network

  • Cha, In-Su;Lim, Jung-Yeol;Yu, Gwon-Jong
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.255-262
    • /
    • 1998
  • The neural network can roughly be classified as the specialized control, indirect control and general schemes. Neural network is adopted for MPPT of solar array. And back propagation algorithm also is used to train neural network controller. We investigate the possibilities of $P_{max}$ control using the neural networks, and then we also examine about operating the solar cell at an optimal voltage comprise of temperature compensated voltage with boost converter. Proposed boost converter of MPPT system is studied by simulation and is implemented by using a microprocessor(80c196kc) which controls duty ratio of the boost converter.

  • PDF