• 제목/요약/키워드: Neural network analysis

검색결과 2,592건 처리시간 0.039초

선형함수 fitting을 위한 선형회귀분석, 역전파신경망 및 성현 Hebbian 신경망의 성능 비교 (Performance Evaluation of Linear Regression, Back-Propagation Neural Network, and Linear Hebbian Neural Network for Fitting Linear Function)

  • 이문규;허해숙
    • 한국경영과학회지
    • /
    • 제20권3호
    • /
    • pp.17-29
    • /
    • 1995
  • Recently, neural network models have been employed as an alternative to regression analysis for point estimation or function fitting in various field. Thus far, however, no theoretical or empirical guides seem to exist for selecting the tool which the most suitable one for a specific function-fitting problem. In this paper, we evaluate performance of three major function-fitting techniques, regression analysis and two neural network models, back-propagation and linear-Hebbian-learning neural networks. The functions to be fitted are simple linear ones of a single independent variable. The factors considered are size of noise both in dependent and independent variables, portion of outliers, and size of the data. Based on comutational results performed in this study, some guidelines are suggested to choose the best technique that can be used for a specific problem concerned.

  • PDF

Accelerated Monte Carlo analysis of flow-based system reliability through artificial neural network-based surrogate models

  • Yoon, Sungsik;Lee, Young-Joo;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • 제26권2호
    • /
    • pp.175-184
    • /
    • 2020
  • Conventional Monte Carlo simulation-based methods for seismic risk assessment of water networks often require excessive computational time costs due to the hydraulic analysis. In this study, an Artificial Neural Network-based surrogate model was proposed to efficiently evaluate the flow-based system reliability of water distribution networks. The surrogate model was constructed with appropriate training parameters through trial-and-error procedures. Furthermore, a deep neural network with hidden layers and neurons was composed for the high-dimensional network. For network training, the input of the neural network was defined as the damage states of the k-dimensional network facilities, and the output was defined as the network system performance. To generate training data, random sampling was performed between earthquake magnitudes of 5.0 and 7.5, and hydraulic analyses were conducted to evaluate network performance. For a hydraulic simulation, EPANET-based MATLAB code was developed, and a pressure-driven analysis approach was adopted to represent an unsteady-state network. To demonstrate the constructed surrogate model, the actual water distribution network of A-city, South Korea, was adopted, and the network map was reconstructed from the geographic information system data. The surrogate model was able to predict network performance within a 3% relative error at trained epicenters in drastically reduced time. In addition, the accuracy of the surrogate model was estimated to within 3% relative error (5% for network performance lower than 0.2) at different epicenters to verify the robustness of the epicenter location. Therefore, it is concluded that ANN-based surrogate model can be utilized as an alternative model for efficient seismic risk assessment to within 5% of relative error.

신경망 및 입력인자 민감도 분석을 이용한 연삭디스크의 가공조건 예측에 관한 연구 (The study on the disk grinding using neural network and Input sensitivity analysis)

  • 이동규;유송민;이위로;신관수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.3-8
    • /
    • 2004
  • When most manufacturing company produce grinding product operators decide grinding condition by experience and subjective judgment. The study on grinding manufacture have been developed to get the grinding condition with the same result when non-experienced or experienced worker work. The objective of this study is to develope the grinding condition and predict the result of grinding by neural network. Several discussions were made in following areas as; getting MRR with image processing, the architecture optimization of neural network with experiment design, analysis of the input neurons using sensitivity approach. The results showed that the developed approach was the best method in predicting grinding condition with respect to surface finish quality.

  • PDF

Improved Characteristic Analysis of a 5-phase Hybrid Stepping Motor Using the Neural Network and Numerical Method

  • Lim, Ki-Chae;Hong, Jung-Pyo;Kim, Gyu-Tak;Im, Tae-Bin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제11B권2호
    • /
    • pp.15-21
    • /
    • 2001
  • This paper presents an improved characteristic analysis methodology for a 5-phase hybrid stepping motor. The basic approach is based on the use of equivalent magnetic circuit taking into account the localized saturation throughout the hybrid stepping motor. The finite element method(FEM) is used to generate the magnetic circuit parameters for the complex stator and rotor teeth and airgap considering the saturation effects in tooth and poles. In addition, the neural network is used to map a change of parameters and predicts their approximation. Therefore, the proposed method efficiently improves the accuracy of analysis by using the parameter characterizing localized saturation effects and reduces the computational time by using the neural network. An improved circuit model of 5-phase hybrid stepping motor is presented and its application is provided to demonstrate the effectiveness of the proposed method.

뇨 스트립 분류에서 육안비색법과 신경회로망 알고리즘 비교 (Comparison of visual colorimetric Analysis and neural network algorithm in urine strip classification)

  • Eum, Sang-hee
    • 한국정보통신학회논문지
    • /
    • 제24권10호
    • /
    • pp.1394-1397
    • /
    • 2020
  • The urine test used as a basic test method of in vitro diagnosis for health care has been used for a long time to be simple and convenient. The urine test method is using a color that appears depending on the change in the ion concentration that reacts over time buried in the standard color test paper(Strips) with a urine sample applied to some reaction reagents. In this paper, it was proposed a neural network algorithm to obtain a suitable and reproducibility and accuracy classifier suitable for the urine analysis system. The experimental results were compared with the visual colorimetric analysis, and the neural network algorithm showed better results.

개선된 스케일 스페이스 필터링과 함수연결연상 신경망을 이용한 화학공정 감시 (Monitoring of Chemical Processes Using Modified Scale Space Filtering and Functional-Link-Associative Neural Network)

  • 최중환;김윤식;장태석;윤인섭
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1113-1119
    • /
    • 2000
  • To operate a process plant safely and economically, process monitoring is very important. Process monitoring is the task to identify the state of the system from sensor data. Process monitoring includes data acquisition, regulatory control, data reconciliation, fault detection, etc. This research focuses on the data recon-ciliation using scale-space filtering and fault detection using functional-link associative neural networks. Scale-space filtering is a multi-resolution signal analysis method. Scale-space filtering can extract highest frequency factors(noise) effectively. But scale-space filtering has too large calculation costs and end effect problems. This research reduces the calculation cost of scale-space filtering by applying the minimum limit to the gaussian kernel. And the end-effect that occurs at the end of the signal of the scale-space filtering is overcome by using extrapolation related with the clustering change detection method. Nonlinear principal component analysis methods using neural network have been reviewed and the separately expanded functional-link associative neural network is proposed for chemical process monitoring. The separately expanded functional-link associative neural network has better learning capabilities, generalization abilities and short learning time than the exiting-neural networks. Separately expanded functional-link associative neural network can express a statistical model similar to real process by expanding the input data separately. Combining the proposed methods-modified scale-space filtering and fault detection method using the separately expanded functional-link associative neural network-a process monitoring system is proposed in this research. the usefulness of the proposed method is proven by its application a boiler water supply unit.

  • PDF

컨볼루션 신경망을 이용한 도시 환경에서의 안전도 점수 예측 모델 연구 (A Safety Score Prediction Model in Urban Environment Using Convolutional Neural Network)

  • 강현우;강행봉
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권8호
    • /
    • pp.393-400
    • /
    • 2016
  • 최근, 컴퓨터 비전과 기계 학습 기술의 도움을 받아 효율적이고 자동적인 도시 환경에 대한 분석 방법의 개발에 대한 연구가 이루어지고 있다. 많은 분석들 중에서도 도시의 안전도 분석은 지역 사회의 많은 관심을 받고 있다. 더욱 정확한 안전도 점수 예측과 인간의 시각적 인지를 반영하기 위해서, 인간의 시각적 인지에서 가장 중요한 전역 정보와 지역 정보의 고려가 필요하다. 이를 위해 우리는 전역 칼럼과 지역 칼럼으로 구성된 Double-column Convolutional Neural Network를 사용한다. 전역 칼럼과 지역 칼럼 각각은 입력은 크기가 변환된 원 영상과 원 영상에서 무작위로 크로핑을 사용한다. 또한, 학습 과정에서 특정 칼럼에 오버피팅되는 문제를 해결하기 위한 새로운 학습방법을 제안한다. 우리의 DCNN 모델의 성능 비교를 위해 2개의 SVR 모델과 3개의 CNN 모델의 평균 제곱근 오차와 상관관계 분석을 측정하였다. 성능 비교 실험 결과 우리의 모델이 0.7432의 평균 제곱근 오차와 0.853/0.840 피어슨/스피어맨 상관 계수로 가장 좋은 성능을 보여주었다.

풍력터빈 상태진단에 적용된 다양한 신경망 모델의 유효성 비교 (Comparison of the effectiveness of various neural network models applied to wind turbine condition diagnosis)

  • 응고만투안;김창현;딘민차우;박민원
    • 한국산업정보학회논문지
    • /
    • 제28권5호
    • /
    • pp.77-87
    • /
    • 2023
  • 재생 에너지 생성에서 중요한 역할을 하는 풍력 터빈은 작동 상태를 정확하게 평가하는 것이 에너지 생산을 극대화하고 가동 중지 시간을 최소화하는 데 매우 중요하다. 이 연구는 풍력 터빈 상태 진단을 위한 다양한 신경망 모델의 비교 분석을 수행하고 센서 측정 및 과거 터빈 데이터가 포함된 데이터 세트를 사용하여 효율성을 평가하였다. 분석을 위해 2MW 이중 여자 유도 발전기 기반 풍력 터빈 시스템(모델 HQ2000)에서 수집된 감시 제어 및 데이터 수집 데이터를 활용했다. 활성화함수, 은닉층 등을 고려하여 인공신경망, 장단기기억, 순환신경망 등 다양한 신경망 모델을 구축하였다. 대칭 평균 절대 백분율 오류는 모델의 성능을 평가하는 데 사용되었다. 평가를 바탕으로 풍력 터빈 상태 진단을 위한 신경망 모델의 상대적 효율성에 관한 결론이 도출되었다. 본 연구결과는 풍력발전기의 상태진단을 위한 모델선정의 길잡이가 되며, 고도의 신경망 기반 기법을 통한 신뢰성 및 효율성 향상에 기여하고, 향후 관련연구의 방향을 제시하는데 기여한다.

인공신경망을 이용한 회귀분석 사례 조사 (A case study to Regression Analysis using Artificial Neural Network)

  • 김지현;이상복
    • 한국품질경영학회:학술대회논문집
    • /
    • 한국품질경영학회 2010년도 춘계학술대회
    • /
    • pp.402-408
    • /
    • 2010
  • Forecasting have qualitative and quantitative methods. Quantitative one analyze macro-economic factors such as the rate of exchange, oil price, interest rate and also predict the micro-economic factors such as sales and demands. Applying various statistical methods depends on the type of data. when data has seasonality and trend, Time Series analysis is proper but when it has casual relation, Regression analysis is good for this. Time Series and Regression can be used together. This study investigate artificial neural networks which is predictive technique for casual relation and try to compare the accuracy of forecasting between regression analysis and artificial neural network.

  • PDF

Neural network을 이용한 OPR예측과 short circulation 동특성 분석 (Dynamic analysis of short circulation with OPR prediction used neural network)

  • 전준석;여영구;박시한;강홍
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2004년도 춘계학술발표논문집
    • /
    • pp.86-96
    • /
    • 2004
  • Identification of dynamics of short circulation during grade change operations in paper mills is very important for the effective plant operation. In the present study a prediction method of One Pass Retention(OPR) is proposed based on the neural network. The present method is used to analyze the dynamics of short circulation during grade change. Properties of the product paper largely depend upon the change in the OPR. In the present study the OPR is predicted from the training of the network by using grade change operation data. The results of the prediction are applied to the modeling equation to give flow rates and consistencies of short circulation.

  • PDF