• Title/Summary/Keyword: Neural network analysis

Search Result 2,550, Processing Time 0.028 seconds

Stable Path Tracking Control of a Mobile Robot Using a Wavelet Based Fuzzy Neural Network

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.552-563
    • /
    • 2005
  • In this paper, we propose a wavelet based fuzzy neural network (WFNN) based direct adaptive control scheme for the solution of the tracking problem of mobile robots. To design a controller, we present a WFNN structure that merges the advantages of the neural network, fuzzy model and wavelet transform. The basic idea of our WFNN structure is to realize the process of fuzzy reasoning of the wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. In our control system, the control signals are directly obtained to minimize the difference between the reference track and the pose of a mobile robot via the gradient descent (GD) method. In addition, an approach that uses adaptive learning rates for training of the WFNN controller is driven via a Lyapunov stability analysis to guarantee fast convergence, that is, learning rates are adaptively determined to rapidly minimize the state errors of a mobile robot. Finally, to evaluate the performance of the proposed direct adaptive control system using the WFNN controller, we compare the control results of the WFNN controller with those of the FNN, the WNN and the WFM controllers.

Prediction of fine dust PM10 using a deep neural network model (심층 신경망모형을 사용한 미세먼지 PM10의 예측)

  • Jeon, Seonghyeon;Son, Young Sook
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.265-285
    • /
    • 2018
  • In this study, we applied a deep neural network model to predict four grades of fine dust $PM_{10}$, 'Good, Moderate, Bad, Very Bad' and two grades, 'Good or Moderate and Bad or Very Bad'. The deep neural network model and existing classification techniques (such as neural network model, multinomial logistic regression model, support vector machine, and random forest) were applied to fine dust daily data observed from 2010 to 2015 in six major metropolitan areas of Korea. Data analysis shows that the deep neural network model outperforms others in the sense of accuracy.

Comparative Study on Surrogate Modeling Methods for Rapid Electromagnetic Forming Analysis

  • Lee, Seungmin;Kang, Beom-Soo;Lee, Kyunghoon
    • Transactions of Materials Processing
    • /
    • v.27 no.1
    • /
    • pp.28-36
    • /
    • 2018
  • Electromagnetic forming is a type of high-speed forming process to deform a workpiece through a Lorentz force. As the high strain rate in an electromagnetic-forming simulation causes infeasibility in determining constitutive parameters, we employed inverse parameter estimation in the previous study. However, the inverse parameter estimation process required us to spend considerable time, which leads to an increase in computational cost. To overcome the computational obstacle, in this research, we applied two types of surrogate modeling methods and compared them to each other to evaluate which model is best for the electromagnetic-forming simulation. We exploited an artificial neural network and we reduced-order modeling methods. During the construction of a reduced-order model, we extracted orthogonal bases with proper orthogonal decomposition and predicted basis coefficients by utilizing an artificial neural network. After the construction of the surrogate models, we verified the artificial neural network and reduced-order models through training and testing samples. As a result, we determined the artificial neural network model is slightly more accurate than the reduced-order model. However, the construction of the artificial neural network model requires a considerably larger amount of time than that of the reduced-order model. Thus, a reduced order modeling method is more efficient than an artificial neural network for estimating the electromagnetic forming and for the rapid approximation of structural simulations which needs repetitive runs.

Comparative Study of Performance of Deep Learning Algorithms in Particulate Matter Concentration Prediction (미세먼지 농도 예측을 위한 딥러닝 알고리즘별 성능 비교)

  • Cho, Kyoung-Woo;Jung, Yong-jin;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.5
    • /
    • pp.409-414
    • /
    • 2021
  • The growing concerns on the emission of particulate matter has prompted a demand for highly reliable particulate matter forecasting. Currently, several studies on particulate matter prediction use various deep learning algorithms. In this study, we compared the predictive performances of typical neural networks used for particulate matter prediction. We used deep neural network(DNN), recurrent neural network, and long short-term memory algorithms to design an optimal predictive model on the basis of a hyperparameter search. The results of a comparative analysis of the predictive performances of the models indicate that the variation trend of the actual and predicted values generally showed a good performance. In the analysis based on the root mean square error and accuracy, the DNN-based prediction model showed a higher reliability for prediction errors compared with the other prediction models.

Decomposition Analysis of Time Series Using Neural Networks (신경망을 이용한 시계열의 분해분석)

  • Jhee, Won-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.1
    • /
    • pp.111-124
    • /
    • 1999
  • This evapaper is toluate the forecasting performance of three neural network(NN) approaches against ARIMA model using the famous time series analysis competition data. The first NN approach is to analyze the second Makridakis (M2) Competition Data using Multilayer Perceptron (MLP) that has been the most popular NN model in time series analysis. Since it is recently known that MLP suffers from bias/variance dilemma, two approaches are suggested in this study. The second approach adopts Cascade Correlation Network (CCN) that was suggested by Fahlman & Lebiere as an alternative to MLP. In the third approach, a time series is separated into two series using Noise Filtering Network (NFN) that utilizes autoassociative memory function of neural network. The forecasts in the decomposition analysis are the sum of two prediction values obtained from modeling each decomposed series, respectively. Among the three NN approaches, Decomposition Analysis shows the best forecasting performance on the M2 Competition Data, and is expected to be a promising tool in analyzing socio-economic time series data because it reduces the effect of noise or outliers that is an impediment to modeling the time series generating process.

  • PDF

A Study on the Prediction for Rolling Force Using Radial Basis Function Network in Hot Rolling Mill (방사형기저함수망을 이용한 열간 사상압연의 압연하중 예측에 관한 연구)

  • 손준식;이덕만;김일수;최승갑
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.368-373
    • /
    • 2003
  • A major concern at present is the simultaneous control of transverse thickness profile and flatness in the finishing stages of hot rolling process. The mathematical modeling of hot rolling process has long been recognized to be a desirable approach to investigate rolling operating practice and the design of mill equipment to improve productivity and quality. However, many factors make the mathematical analysis of the rolling process very complex and time-consuming. In order to overcome these problems and to obtain an accurate rolling force, the predicted model of rolling force using neural networks has widely been employed. In this paper, Radial Basis Function Network(RBFN) is applied to improve the accuracy of rolling force prediction in hot rolling mill. In order to verify and analysis the performance of applied neural network, the comparison with the measured rolling force and the predicted results using two different neural networks - RBFN, MLP, has respectively been carried out. The results obtained using RBFN neural network are much more accurate those obtained the MLP.

  • PDF

A Comparative Study on the Performance of Intrusion Detection using Decision Tree and Artificial Neural Network Models (의사결정트리와 인공 신경망 기법을 이용한 침입탐지 효율성 비교 연구)

  • Jo, Seongrae;Sung, Haengnam;Ahn, Byunghyuk
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.4
    • /
    • pp.33-45
    • /
    • 2015
  • Currently, Internet is used an essential tool in the business area. Despite this importance, there is a risk of network attacks attempting collection of fraudulence, private information, and cyber terrorism. Firewalls and IDS(Intrusion Detection System) are tools against those attacks. IDS is used to determine whether a network data is a network attack. IDS analyzes the network data using various techniques including expert system, data mining, and state transition analysis. This paper tries to compare the performance of two data mining models in detecting network attacks. They are decision tree (C4.5), and neural network (FANN model). I trained and tested these models with data and measured the effectiveness in terms of detection accuracy, detection rate, and false alarm rate. This paper tries to find out which model is effective in intrusion detection. In the analysis, I used KDD Cup 99 data which is a benchmark data in intrusion detection research. I used an open source Weka software for C4.5 model, and C++ code available for FANN model.

A Neural Network and Kalman Filter Hybrid Approach for GPS/INS Integration

  • Wang, Jianguo Jack;Wang, Jinling;Sinclair, David;Watts, Leo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.277-282
    • /
    • 2006
  • It is well known that Kalman filtering is an optimal real-time data fusion method for GPS/INS integration. However, it has some limitations in terms of stability, adaptability and observability. A Kalman filter can perform optimally only when its dynamic model is correctly defined and the noise statistics for the measurement and process are completely known. It is found that estimated Kalman filter states could be influenced by several factors, including vehicle dynamic variations, filter tuning results, and environment changes, etc., which are difficult to model. Neural networks can map input-output relationships without apriori knowledge about them; hence a proper designed neural network is capable of learning and extracting these complex relationships with enough training. This paper presents a GPS/INS integrated system that combines Kalman filtering and neural network algorithms to improve navigation solutions during GPS outages. An Extended Kalman filter estimates INS measurement errors, plus position, velocity and attitude errors etc. Kalman filter states, and gives precise navigation solutions while GPS signals are available. At the same time, a multi-layer neural network is trained to map the vehicle dynamics with corresponding Kalman filter states, at the same rate of measurement update. After the output of the neural network meets a similarity threshold, it can be used to correct INS measurements when no GPS measurements are available. Selecting suitable inputs and outputs of the neural network is critical for this hybrid method. Detailed analysis unveils that some Kalman filter states are highly correlated with vehicle dynamic variations. The filter states that heavily impact system navigation solutions are selected as the neural network outputs. The principle of this hybrid method and the neural network design are presented. Field test data are processed to evaluate the performance of the proposed method.

  • PDF

Robust Deep Learning-Based Profiling Side-Channel Analysis for Jitter (지터에 강건한 딥러닝 기반 프로파일링 부채널 분석 방안)

  • Kim, Ju-Hwan;Woo, Ji-Eun;Park, So-Yeon;Kim, Soo-Jin;Han, Dong-Guk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1271-1278
    • /
    • 2020
  • Deep learning-based profiling side-channel analysis is a powerful analysis method that utilizes the neural network to profile the relationship between the side-channel information and the intermediate value. Since the neural network interprets each point of the signal in a different dimension, jitter makes it much hard that the neural network with dimension-wise weights learns the relationship. This paper shows that replacing the fully-connected layer of the traditional CNN (Convolutional Neural Network) with global average pooling (GAP) allows us to design the inherently robust neural network inherently for jitter. We experimented with the ChipWhisperer-Lite board to demonstrate the proposed method: as a result, the validation accuracy of the CNN with a fully-connected layer was only up to 1.4%; contrastively, the validation accuracy of the CNN with GAP was very high at up to 41.7%.

A Study on Optimization Approach for the Quantification Analysis Problem Using Neural Networks (신경회로망을 이용한 수량화 문제의 최적화 응용기법 연구)

  • Lee, Dong-Myung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.206-211
    • /
    • 2006
  • The quantification analysis problem is that how the m entities that have n characteristics can be linked to p-dimension space to reflect the similarity of each entity In this paper, the optimization approach for the quantification analysis problem using neural networks is suggested, and the performance is analyzed The computation of average variation volume by mean field theory that is analytical approximated mobility of a molecule system and the annealed mean field neural network approach are applied in this paper for solving the quantification analysis problem. As a result, the suggested approach by a mean field annealing neural network can obtain more optimal solution than the eigen value analysis approach in processing costs.