• 제목/요약/키워드: Neural network algorithm

검색결과 3,547건 처리시간 0.033초

학습기능을 갖는 자동 규칙 생성 퍼지 신경망 (Fuzzy Neural Network with Rule Generaton Nased on Back-Propagation Algorithm)

  • 정재경;이동윤;정기욱;김완찬
    • 전자공학회논문지B
    • /
    • 제33B권4호
    • /
    • pp.191-200
    • /
    • 1996
  • This paper presetns a new fuzzy neural network for fuzzy modeling.The fuzzy neural network is composed of 4 layers and then odes of each layer represent the each step of the if-then fuzzy inference. A heuristic based on the back-propagation algorithm is proposed to ajdust the parameters of the fuzzy nerual network. We prove the feasibility of the network using the experiments on modeling a nonlinear mathematical system and the comparison with previous research.

  • PDF

두개의 Extended Kalman Filter를 이용한 Recurrent Neural Network 학습 알고리듬 (A Learning Algorithm for a Recurrent Neural Network Base on Dual Extended Kalman Filter)

  • 송명근;김상희;박원우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.349-351
    • /
    • 2004
  • The classical dynamic backpropagation learning algorithm has the problems of learning speed and the determine of learning parameter. The Extend Kalman Filter(EKF) is used effectively for a state estimation method for a non linear dynamic system. This paper presents a learning algorithm using Dual Extended Kalman Filter(DEKF) for Fully Recurrent Neural Network(FRNN). This DEKF learning algorithm gives the minimum variance estimate of the weights and the hidden outputs. The proposed DEKF learning algorithm is applied to the system identification of a nonlinear SISO system and compared with dynamic backpropagation learning algorithm.

  • PDF

게임 NPC를 위한 신경망 기반의 이동 안공지능 알고리즘 (A Neural Network-based Artificial Intelligence Algorithm with Movement for the Game NPC)

  • 조인휘;최문원
    • 한국통신학회논문지
    • /
    • 제35권12A호
    • /
    • pp.1181-1187
    • /
    • 2010
  • 본 논문은 게임에서 신경망기반으로 지능캐릭터에게 학습을 통한 상황판단을 하는 이동 인공지능을 제안하였다. 신경망은 게임 규칙과 문제해결 방법을 정의한 알고리즘을 통한 입출력 값을 이용하여 지도 학습된다. 지도 학습된 지능캐릭터는 변화하는 주변 환경을 인지하여, 적절한 행동을 하게 된다. 본 논문에서는 신경망을 이용한 이동 인공지능을 점진적으로 설계하였고, 성능 실험을 위하여 간단한 게임을 구현하였다. 이 게임은 일정한 2차원 공간에 목표, 캐릭터, 장애물이 존재하고 캐릭터는 목표 지점으로 장애물을 회피하며 이동해야한다. 이동 인공지능은 실험마다 정의한 알고리즘을 통해 규칙과 몇 가지 문제해결법을 학습하여 변화하는 환경에서 목표를 완수 할 수 있으며, 정의한 알고리즘과 신경망 구조를 동일하게 설계하였다. 실험 결과, 제안한 이동 인공지능은 주변 상황을 인지하여 이동을 수행하고 목표를 완수할 수 있음을 보였다. 이동 인공지능은 복잡한 구조의 게임도 학습 알고리즘을 정의하여 학습하면 신경망은 변화한 환경에서도 적절한 결과를 보여 줄 수 있을 것이다.

신경망 학습알고리즘의 비교와 2차원 익형의 비정상 공력하중 예측기법에 관한 연구 (Study of Neural Network Training Algorithm Comparison and Prediction of Unsteady Aerodynamic Forces of 2D Airfoil)

  • 강승온;전상욱;박경현;전용희;이동호
    • 한국항공우주학회지
    • /
    • 제37권5호
    • /
    • pp.425-432
    • /
    • 2009
  • 본 연구에서는 오일러 CFD코드에서 얻은 데이터를 이용하여 2차원 익형의 비정상 공력하중을 모델링하고 예측할 수 있는 신경망의 능력을 확인하였다. 신경망 모델은 감독자 관리 학습을 기반으로 하여 르벤버그-마쿼트 알고리즘, 그리고 여기에 유전알고리즘을 결합시킨 혼합형 유전알고리즘을 사용하여 구성하고 각 경우에 대하여 그 효율성을 비교 분석하였다. 복잡한 시스템을 모사하는 신경망을 학습시키는 데는 혼합형유전알고리즘이 더 효율적이라는 것을 보였으며 신경망모델에 의한 2차원 익형의 비정상공력하중 예측결과 실제 수치결과와 비교적 정확하게 일치하여 신경망 모델이 축소모델로서의 기능을 발휘하는 것을 입증하였다.

개선된 유전자 역전파 신경망에 기반한 예측 알고리즘 (Forecasting algorithm using an improved genetic algorithm based on backpropagation neural network model)

  • 윤여창;조나래;이성덕
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권6호
    • /
    • pp.1327-1336
    • /
    • 2017
  • 본 연구에서는 단기 예측을 위한 자기회귀누적이동평균모형, 역전파 신경망 및 유전자 알고리즘의 결합 적용에 대하여 논의하고 이를 통한 유전자-신경망 알고리즘의 효용성을 살펴본다. 일반적으로 역전파 알고리즘은 지역 최소값에 수렴될 수 있는 단점이 있기 때문에, 여기서는 예측 정확도를 높이기 위해 역전파 신경망 구조를 최적화하고 유전자 알고리즘을 결합한 유전자-신경망 알고리즘 기반 예측모형을 구축한다. 실험을 통한 오차 비교는 KOSPI 지수를 이용한다. 결과는 이 연구에서 제안된 유전자-신경망 모형이 역전파 신경망 모형과 비교할 때 예측 정확도에서 어느 정도 유의한 효율성을 보여주고자 한다.

스테레오정합과 신경망을 이용한 3차원 잡기계획 (3D Grasp Planning using Stereo Matching and Neural Network)

  • 이현기;배준영;이상룡
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1110-1119
    • /
    • 2003
  • This paper deals with the synthesis of the 3-dimensional grasp planning for unknown objects. Previous studies have many problems, which the estimation time for finding the grasping points is much long and the analysis used the not-perfect 3-dimensional modeling. To overcome these limitations in this paper new algorithm is proposed, which algorithm is achieved by two steps. First step is to find the whole 3-dimensional geometrical modeling for unknown objects by using stereo matching. Second step is to find the optimal grasping points for unknown objects by using the neural network trained by the result of optimization using genetic algorithm. The algorithm is verified by computer simulation, comparing the result between neural network and optimization.

개선된 신경망 알고리즘을 이용한 영상 클러스터링 (Image Clustering using Improved Neural Network Algorithm)

  • 박상성;이만희;유헌우;문호석;장동식
    • 제어로봇시스템학회논문지
    • /
    • 제10권7호
    • /
    • pp.597-603
    • /
    • 2004
  • In retrieving large database of image data, the clustering is essential for fast retrieval. However, it is difficult to cluster a number of image data adequately. Moreover, current retrieval methods using similarities are uncertain of retrieval accuracy and take much retrieving time. In this paper, a suggested image retrieval system combines Fuzzy ART neural network algorithm to reinforce defects and to support them efficiently. This image retrieval system takes color and texture as specific feature required in retrieval system and normalizes each of them. We adapt Fuzzy ART algorithm as neural network which receive normalized input-vector and propose improved Fuzzy ART algorithm. The result of implementation with 200 image data shows approximately retrieval ratio of 83%.

Genetic Algorithm과 Neural Network을 이용한 Tube Hydroforming의 성형공정 최적화에 대한 연구 (A Study on Optimal Process Design of Hydroforming Process with n Genetic Algorithm and Neural Network)

  • 양재봉;전병희;오수익
    • 소성∙가공
    • /
    • 제9권6호
    • /
    • pp.644-652
    • /
    • 2000
  • Tube hydroforming is recently drawing attention of automotive industries due to its several advantages over conventional methods. It can produce wide range of products such as subframes, engine cradles, and exhaust manifolds with cheaper production cost by reducing overall number of processes. h successful tube hydroforming depends on the reasonable combination of the internal pressure and axial load at the tube ends. This paper deals with the optimal process design of hydroforming process using the genetic algorithm and neural network. An optimization technique is used in order to minimize the tube thickness variation by determining the optimal loading path in the tube expansion forming and the tube T-shape forming process.

  • PDF

인공지능을 이용한 휴머노이드 로봇의 자세 최적화 (Optimization of Posture for Humanoid Robot Using Artificial Intelligence)

  • 최국진
    • 한국산업융합학회 논문집
    • /
    • 제22권2호
    • /
    • pp.87-93
    • /
    • 2019
  • This research deals with posture optimization for humanoid robot against external forces using genetic algorithm and neural network. When the robot takes a motion to push an object, the torque of each joint is generated by reaction force at the palm. This study aims to optimize the posture of the humanoid robot that will change this torque. This study finds an optimized posture using a genetic algorithm such that torques are evenly distributed over the all joints. Then, a number of different optimized postures are generated from various the reaction forces at the palm. The data is to be used as training data of MLP(Multi-Layer Perceptron) neural network with BP(Back Propagation) learning algorithm. Humanoid robot can find the optimal posture at different reaction forces in real time using the trained neural network include non-training data.

Adaptive Clustering Algorithm for Recycling Cell Formation: An Application of Fuzzy ART Neural Networks

  • Seo, Kwang-Kyu;Park, Ji-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2137-2147
    • /
    • 2004
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end-of-life phase. Disposal products have the uncertainties of product status by usage influences during product use phase, and recycling cells are formed design, process and usage attributes. In order to deal with the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. Fuzzy C-mean algorithm and a heuristic approach based on fuzzy ART neural network is suggested. Especially, the modified Fuzzy ART neural network is shown that it has a good clustering results and gives an extension for systematically generating alternative solutions in the recycling cell formation problem. Disposal refrigerators are shown as examples.