This paper presetns a new fuzzy neural network for fuzzy modeling.The fuzzy neural network is composed of 4 layers and then odes of each layer represent the each step of the if-then fuzzy inference. A heuristic based on the back-propagation algorithm is proposed to ajdust the parameters of the fuzzy nerual network. We prove the feasibility of the network using the experiments on modeling a nonlinear mathematical system and the comparison with previous research.
The classical dynamic backpropagation learning algorithm has the problems of learning speed and the determine of learning parameter. The Extend Kalman Filter(EKF) is used effectively for a state estimation method for a non linear dynamic system. This paper presents a learning algorithm using Dual Extended Kalman Filter(DEKF) for Fully Recurrent Neural Network(FRNN). This DEKF learning algorithm gives the minimum variance estimate of the weights and the hidden outputs. The proposed DEKF learning algorithm is applied to the system identification of a nonlinear SISO system and compared with dynamic backpropagation learning algorithm.
본 논문은 게임에서 신경망기반으로 지능캐릭터에게 학습을 통한 상황판단을 하는 이동 인공지능을 제안하였다. 신경망은 게임 규칙과 문제해결 방법을 정의한 알고리즘을 통한 입출력 값을 이용하여 지도 학습된다. 지도 학습된 지능캐릭터는 변화하는 주변 환경을 인지하여, 적절한 행동을 하게 된다. 본 논문에서는 신경망을 이용한 이동 인공지능을 점진적으로 설계하였고, 성능 실험을 위하여 간단한 게임을 구현하였다. 이 게임은 일정한 2차원 공간에 목표, 캐릭터, 장애물이 존재하고 캐릭터는 목표 지점으로 장애물을 회피하며 이동해야한다. 이동 인공지능은 실험마다 정의한 알고리즘을 통해 규칙과 몇 가지 문제해결법을 학습하여 변화하는 환경에서 목표를 완수 할 수 있으며, 정의한 알고리즘과 신경망 구조를 동일하게 설계하였다. 실험 결과, 제안한 이동 인공지능은 주변 상황을 인지하여 이동을 수행하고 목표를 완수할 수 있음을 보였다. 이동 인공지능은 복잡한 구조의 게임도 학습 알고리즘을 정의하여 학습하면 신경망은 변화한 환경에서도 적절한 결과를 보여 줄 수 있을 것이다.
본 연구에서는 오일러 CFD코드에서 얻은 데이터를 이용하여 2차원 익형의 비정상 공력하중을 모델링하고 예측할 수 있는 신경망의 능력을 확인하였다. 신경망 모델은 감독자 관리 학습을 기반으로 하여 르벤버그-마쿼트 알고리즘, 그리고 여기에 유전알고리즘을 결합시킨 혼합형 유전알고리즘을 사용하여 구성하고 각 경우에 대하여 그 효율성을 비교 분석하였다. 복잡한 시스템을 모사하는 신경망을 학습시키는 데는 혼합형유전알고리즘이 더 효율적이라는 것을 보였으며 신경망모델에 의한 2차원 익형의 비정상공력하중 예측결과 실제 수치결과와 비교적 정확하게 일치하여 신경망 모델이 축소모델로서의 기능을 발휘하는 것을 입증하였다.
Journal of the Korean Data and Information Science Society
/
제28권6호
/
pp.1327-1336
/
2017
본 연구에서는 단기 예측을 위한 자기회귀누적이동평균모형, 역전파 신경망 및 유전자 알고리즘의 결합 적용에 대하여 논의하고 이를 통한 유전자-신경망 알고리즘의 효용성을 살펴본다. 일반적으로 역전파 알고리즘은 지역 최소값에 수렴될 수 있는 단점이 있기 때문에, 여기서는 예측 정확도를 높이기 위해 역전파 신경망 구조를 최적화하고 유전자 알고리즘을 결합한 유전자-신경망 알고리즘 기반 예측모형을 구축한다. 실험을 통한 오차 비교는 KOSPI 지수를 이용한다. 결과는 이 연구에서 제안된 유전자-신경망 모형이 역전파 신경망 모형과 비교할 때 예측 정확도에서 어느 정도 유의한 효율성을 보여주고자 한다.
This paper deals with the synthesis of the 3-dimensional grasp planning for unknown objects. Previous studies have many problems, which the estimation time for finding the grasping points is much long and the analysis used the not-perfect 3-dimensional modeling. To overcome these limitations in this paper new algorithm is proposed, which algorithm is achieved by two steps. First step is to find the whole 3-dimensional geometrical modeling for unknown objects by using stereo matching. Second step is to find the optimal grasping points for unknown objects by using the neural network trained by the result of optimization using genetic algorithm. The algorithm is verified by computer simulation, comparing the result between neural network and optimization.
In retrieving large database of image data, the clustering is essential for fast retrieval. However, it is difficult to cluster a number of image data adequately. Moreover, current retrieval methods using similarities are uncertain of retrieval accuracy and take much retrieving time. In this paper, a suggested image retrieval system combines Fuzzy ART neural network algorithm to reinforce defects and to support them efficiently. This image retrieval system takes color and texture as specific feature required in retrieval system and normalizes each of them. We adapt Fuzzy ART algorithm as neural network which receive normalized input-vector and propose improved Fuzzy ART algorithm. The result of implementation with 200 image data shows approximately retrieval ratio of 83%.
Tube hydroforming is recently drawing attention of automotive industries due to its several advantages over conventional methods. It can produce wide range of products such as subframes, engine cradles, and exhaust manifolds with cheaper production cost by reducing overall number of processes. h successful tube hydroforming depends on the reasonable combination of the internal pressure and axial load at the tube ends. This paper deals with the optimal process design of hydroforming process using the genetic algorithm and neural network. An optimization technique is used in order to minimize the tube thickness variation by determining the optimal loading path in the tube expansion forming and the tube T-shape forming process.
This research deals with posture optimization for humanoid robot against external forces using genetic algorithm and neural network. When the robot takes a motion to push an object, the torque of each joint is generated by reaction force at the palm. This study aims to optimize the posture of the humanoid robot that will change this torque. This study finds an optimized posture using a genetic algorithm such that torques are evenly distributed over the all joints. Then, a number of different optimized postures are generated from various the reaction forces at the palm. The data is to be used as training data of MLP(Multi-Layer Perceptron) neural network with BP(Back Propagation) learning algorithm. Humanoid robot can find the optimal posture at different reaction forces in real time using the trained neural network include non-training data.
The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end-of-life phase. Disposal products have the uncertainties of product status by usage influences during product use phase, and recycling cells are formed design, process and usage attributes. In order to deal with the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. Fuzzy C-mean algorithm and a heuristic approach based on fuzzy ART neural network is suggested. Especially, the modified Fuzzy ART neural network is shown that it has a good clustering results and gives an extension for systematically generating alternative solutions in the recycling cell formation problem. Disposal refrigerators are shown as examples.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.