• 제목/요약/키워드: Neural Networks Technique

검색결과 532건 처리시간 0.032초

Generating Augmented Lifting Player using Pose Tracking

  • Choi, Jong-In;Kim, Jong-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권5호
    • /
    • pp.19-26
    • /
    • 2020
  • 본 논문에서는 다양한 사용자의 영상을 이용하여 축구공 리프팅과 같은 묘기 장면을 만들 수 있는 프레임워크를 제안한다. 제안된 방법은 핸드폰 등으로 촬영된 일반적인 사용자의 영상이라면 수 초 이내에 원하는 결과를 생성할 수 있다. 본 논문의 프레임워크는 크게 세 부분으로 나누어진다. 첫 번째는 사용자의 영상을 입력받아 자세를 분석하는 것이다. 이를 위해서는 딥러닝 기법으로 영상을 분석하여 사용자의 포즈를 계산하고, 원하는 신체 부위의 움직임을 추적할 수 있다. 두 번째는 지정된 신체부위의 이동 궤적을 분석하여 물체를 타격하는 위치와 시간을 계산하는 것이다. 마지막으로 분석된 타격 정보를 이용하여 물체의 이동 궤적을 생성하는 것이다. 그러면 입력된 사용자 영상과 동기화되는 자연스러운 물체 리프팅 장면을 생성할 수 있다. 사실적인 물체의 움직임을 생성하기 위해 물리 기반 최적화를 사용하였다. 본 논문의 프레임워크를 이용하면 다양한 증강현실 어플리케이션을 제작할 수 있다.

음성명령기반 26관절 보행로봇 실시간 작업동작제어에 관한 연구 (A Study on Real-Time Walking Action Control of Biped Robot with Twenty Six Joints Based on Voice Command)

  • 조상영;김민성;양준석;구영목;정양근;한성현
    • 제어로봇시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.293-300
    • /
    • 2016
  • The Voice recognition is one of convenient methods to communicate between human and robots. This study proposes a speech recognition method using speech recognizers based on Hidden Markov Model (HMM) with a combination of techniques to enhance a biped robot control. In the past, Artificial Neural Networks (ANN) and Dynamic Time Wrapping (DTW) were used, however, currently they are less commonly applied to speech recognition systems. This Research confirms that the HMM, an accepted high-performance technique, can be successfully employed to model speech signals. High recognition accuracy can be obtained by using HMMs. Apart from speech modeling techniques, multiple feature extraction methods have been studied to find speech stresses caused by emotions and the environment to improve speech recognition rates. The procedure consisted of 2 parts: one is recognizing robot commands using multiple HMM recognizers, and the other is sending recognized commands to control a robot. In this paper, a practical voice recognition system which can recognize a lot of task commands is proposed. The proposed system consists of a general purpose microprocessor and a useful voice recognition processor which can recognize a limited number of voice patterns. By simulation and experiment, it was illustrated the reliability of voice recognition rates for application of the manufacturing process.

공간 클래스 단순화를 이용한 의미론적 실내 영상 분할 (Semantic Indoor Image Segmentation using Spatial Class Simplification)

  • 김정환;최형일
    • 인터넷정보학회논문지
    • /
    • 제20권3호
    • /
    • pp.33-41
    • /
    • 2019
  • 본 논문에서는 실내 공간 이미지의 의미론적 영상 분할을 위해 배경과 물체로 재설계된 클래스를 학습하는 방법을 제안한다. 의미론적 영상 분할은 이미지의 벽이나 침대 등 의미를 갖는 부분들을 픽셀 단위로 나누는 기술이다. 기존 의미론적 영상 분할에 대한 연구들은 신경망을 통해 이미지의 다양한 객체 클래스들을 학습하는 방법들을 제시해왔고, 긴 학습 시간에 비해 정확도가 부족하다는 문제가 지적되었다. 그러나 물체와 배경을 분리하는 문제에서는, 다양한 객체 클래스를 학습할 필요가 없다. 따라서 우리는 이 문제에 집중해, 클래스를 단순화 후에 학습하는 방법을 제안한다. 학습 방법의 실험 결과로 기존 방법들보다 정확도가 약 5~12% 정도 높았다. 그리고 같은 환경에서 클래스를 달리 구성했을 때 학습 시간이 약 14 ~ 60분 정도 단축됐으며, 이에 따라 물체와 배경을 분리하는 문제에 대해 제안하는 방법이 효율적임을 보인다.

소프트웨어-정의 네트워크에서 CNN 모델을 이용한 DDoS 공격 탐지 기술 (A DDoS Attack Detection Technique through CNN Model in Software Define Network)

  • 고광만
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권6호
    • /
    • pp.605-610
    • /
    • 2020
  • 소프트웨어 정의 네트워크가 확장성, 유연성, 네트워크상 프로그래밍이 가능한 특징으로 네트워크 관리에서 표준으로 자리잡아 가고 있지만 많은 장점에도 불구하고 하나의 컨트롤러에 대한 사이버 공격이 전체 네트워크를 영향을 주는 문제점을 가지고 있다. 특히, 컨트롤러에 대한 DDoS 공격이 대표적인 사례로서 다양한 공격 탐지 기술에 대한 연구가 진행되고 있다. 본 논문에서는 최초로 84개 DDoS 공격 Feature 데이터셋을 Kaggle에서 획득한 후 Permutation Feature Importance 알고리즘을 이용하여 상위 20의 중요도를 갖는 Feature를 선택하여 딥 러닝 기반의 CNN 모델에서 학습과 검증을 수행하였다. 이를 통해, 최적의 공격 탐지율을 갖는 상위 13개의 DDoS Feature 선택이 DDoS 공격 탐지율 96%을 유지하면서 적정한 공격 탐지 시간, 정확성 등에서 매우 우수한 결과를 제시하였다.

A Best Effort Classification Model For Sars-Cov-2 Carriers Using Random Forest

  • Mallick, Shrabani;Verma, Ashish Kumar;Kushwaha, Dharmender Singh
    • International Journal of Computer Science & Network Security
    • /
    • 제21권1호
    • /
    • pp.27-33
    • /
    • 2021
  • The whole world now is dealing with Coronavirus, and it has turned to be one of the most widespread and long-lived pandemics of our times. Reports reveal that the infectious disease has taken toll of the almost 80% of the world's population. Amidst a lot of research going on with regards to the prediction on growth and transmission through Symptomatic carriers of the virus, it can't be ignored that pre-symptomatic and asymptomatic carriers also play a crucial role in spreading the reach of the virus. Classification Algorithm has been widely used to classify different types of COVID-19 carriers ranging from simple feature-based classification to Convolutional Neural Networks (CNNs). This research paper aims to present a novel technique using a Random Forest Machine learning algorithm with hyper-parameter tuning to classify different types COVID-19-carriers such that these carriers can be accurately characterized and hence dealt timely to contain the spread of the virus. The main idea for selecting Random Forest is that it works on the powerful concept of "the wisdom of crowd" which produces ensemble prediction. The results are quite convincing and the model records an accuracy score of 99.72 %. The results have been compared with the same dataset being subjected to K-Nearest Neighbour, logistic regression, support vector machine (SVM), and Decision Tree algorithms where the accuracy score has been recorded as 78.58%, 70.11%, 70.385,99% respectively, thus establishing the concreteness and suitability of our approach.

단일 영상 기반 3차원 복원을 위한 약교사 인공지능 기술 동향 (Recent Trends of Weakly-supervised Deep Learning for Monocular 3D Reconstruction)

  • 김승룡
    • 방송공학회논문지
    • /
    • 제26권1호
    • /
    • pp.70-78
    • /
    • 2021
  • 2차원 단일 영상에서 3차원 깊이 정보를 복원하는 기술은 다양한 한계 및 산업계에서 활용도가 매우 높은 기술임이 분명하다. 하지만 2차원 영상은 임의의 3차원 정보의 투사의 결과라는 점에서 내재적 깊이 모호성(Depth ambiguity)을 가지고 있고 이를 해결하는 문제는 매우 도전적이다. 이러한 한계점은 최근 인공지능 기술의 발달에 힘입어 2차원 영상과 3차원 깊이 정보간의 대응 관계를 학습하는 알고리즘의 발달로 극복되어 지고 있다. 이러한 3차원 깊이 정보 획득을 위한 인공지능 기술을 학습하기 위해서는 대응 관계를 나타내는 대규모의 학습데이터의 필요성이 절대적인데, 이러한 데이터는 취득 및 가공 과정에서 상당한 노동력을 필요로 하기에 제한적으로 구축이 가능하다. 따라서 최근의 기술 발전 동향은 대규모의 2차원 영상과 메타 데이터를 활용하여 3차원 깊이 정보를 예측하려는 약교사(Weakly-supervised) 인공지능 기술의 발전이 주를 이루고 있다. 본 고에서는 이러한 기술 발전 동향을 장면(Scene) 3차원 복원 기술과 객체(Object) 3차원 복원 기술로 나누어 요약하고 현재의 기술들의 한계점과 향후 나아갈 방향에 대해서 토의한다.

CNN 모델을 활용한 항공기 ISAR 영상 데이터베이스 구축에 관한 연구 (A Study on the Establishment of ISAR Image Database Using Convolution Neural Networks Model)

  • 정승호;하용훈
    • 한국시뮬레이션학회논문지
    • /
    • 제29권4호
    • /
    • pp.21-31
    • /
    • 2020
  • 비협조적 표적식별(NCTR, Non-Cooperative Target Recognition)은 전자정보 등 다른 체계의 지원 없이 레이다 자체적으로 표적을 식별하는 기능을 말한다. 이를 구현하기 위한 대표적인 방법 중 하나인 역합성개구레이다(ISAR) 영상은 표적의 기동 및 위치에 따라 크게 변하기 때문에 기종을 판단할 수 있는 데이터베이스 없이 이를 자동으로 식별하기란 매우 어렵다. 본 연구에서는 실측 영상이 부족한 상황에서도 ISAR 영상 시뮬레이션 및 딥러닝 기법을 활용한 식별 데이터베이스 구축방안에 대해 논한다. 다양한 레이다 운용 환경에 따라 변화하는 ISAR 영상을 모사하기 위해 '완전 산란체', '결손 산란체', 'JEM 잡음'으로 명명한 영상 형성 과정을 거쳐 이를 학습하는 모델을 제안한다. 이 모델의 학습 결과를 통해 유사한 형상의 시뮬레이션 영상은 물론 처음 입력된 실측 ISAR 영상도 식별할 수 있음을 확인하였다.

GPS 시각전송 측정데이터에 대한 딥러닝 모델 기반 시각오프셋 예측 (Deep Learning based Time Offset Estimation in GPS Time Transfer Measurement Data)

  • 유동희;김민호
    • 한국정보통신학회논문지
    • /
    • 제26권3호
    • /
    • pp.456-462
    • /
    • 2022
  • 본 논문에서는 세계협정시(UTC)를 결정하기 위해 GPS 위성에서 전송된 코드 신호에서 추출한 측정 데이터를 기반으로 한 정밀시각비교 기법에 딥러닝 모델인 LSTM을 적용하여 시각 오프셋을 예측하는 방법을 소개한다. 이를 위해 우선, 하루 단위로 GPS 위성으로부터 수신된 코드 신호에서 시각 정보를 추출하고 하루 단위의 시각 오프셋을 하나의 시계열 데이터로 구축하는 과정을 소개한다. 구축된 시각 오프셋 시계열 데이터에 대해 딥러닝 모델을 적용하는데, 순환신경망 중 하나인 LSTM을 적용하여 GPS의 시각 오프셋 예측을 수행하였다. 본 연구를 통해 GNSS 기반 정밀 시각비교분야에서 딥러닝을 적용한 시각 오프셋 예측의 가능성을 확인하였다.

머신 러닝을 사용한 이미지 클러스터링: K-means 방법을 사용한 InceptionV3 연구 (Image Clustering Using Machine Learning : Study of InceptionV3 with K-means Methods.)

  • 닌담 솜사우트;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.681-684
    • /
    • 2021
  • In this paper, we study image clustering without labeling using machine learning techniques. We proposed an unsupervised machine learning technique to design an image clustering model that automatically categorizes images into groups. Our experiment focused on inception convolutional neural networks (inception V3) with k-mean methods to cluster images. For this, we collect the public datasets containing Food-K5, Flowers, Handwritten Digit, Cats-dogs, and our dataset Rice Germination, and the owner dataset Palm print. Our experiment can expand into three-part; First, format all the images to un-label and move to whole datasets. Second, load dataset into the inception V3 extraction image features and transferred to the k-mean cluster group hold on six classes. Lastly, evaluate modeling accuracy using the confusion matrix base on precision, recall, F1 to analyze. In this our methods, we can get the results as 1) Handwritten Digit (precision = 1.000, recall = 1.000, F1 = 1.00), 2) Food-K5 (precision = 0.975, recall = 0.945, F1 = 0.96), 3) Palm print (precision = 1.000, recall = 0.999, F1 = 1.00), 4) Cats-dogs (precision = 0.997, recall = 0.475, F1 = 0.64), 5) Flowers (precision = 0.610, recall = 0.982, F1 = 0.75), and our dataset 6) Rice Germination (precision = 0.997, recall = 0.943, F1 = 0.97). Our experiment showed that modeling could get an accuracy rate of 0.8908; the outcomes state that the proposed model is strongest enough to differentiate the different images and classify them into clusters.

KOSPI index prediction using topic modeling and LSTM

  • Jin-Hyeon Joo;Geun-Duk Park
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권7호
    • /
    • pp.73-80
    • /
    • 2024
  • 본 연구는 토픽 모델링과 장단기 기억(LSTM) 신경망을 결합하여 한국 종합주가지수(KOSPI) 예측의 정확도를 향상하는 방법을 제안한다. 본 논문에서는 LDA(Latent Dirichlet Allocation) 기법을 이용해 금융 뉴스 데이터에서 금리 인상 및 인하와 관련된 10개의 주요 주제를 추출하고, 추출된 주제를 과거 KOSPI 지수와 함께 LSTM 모델에 입력하여 KOSPI 지수를 예측하는 모델을 제안한다. 제안된 모델은 과거 KOSPI 지수를 LSTM 모델에 입력하여 시계열 예측 방법과 뉴스 데이터를 입력하여 토픽 모델링하는 방법을 결합하여 KOSPI 지수를 예측하는 특성을 가진다. 제안된 모델의 성능을 검증하기 위해, 본 논문에서는 LSTM의 입력 데이터의 종류에 따라 4개의 모델(LSTM_K 모델, LSTM_KNS 모델, LDA_K 모델, LDA_KNS 모델)을 설계하고 각 모델의 예측 성능을 제시하였다. 예측 성능을 비교한 결과, 금융 뉴스 주제 데이터와 과거 KOSPI 지수 데이터를 입력으로 하는 LSTM 모델(LDA_K 모델)이 가장 낮은 RMSE(Root Mean Square Error)를 기록하여 가장 좋은 예측 성능을 보였다.