• Title/Summary/Keyword: Neural Network. Clustering

Search Result 318, Processing Time 0.024 seconds

Analyzing Influence of Outlier Elimination on Accuracy of Software Effort Estimation (소프트웨어 공수 예측의 정확성에 대한 이상치 제거의 영향 분석)

  • Seo, Yeong-Seok;Yoon, Kyung-A;Bae, Doo-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.10
    • /
    • pp.589-599
    • /
    • 2008
  • Accurate software effort estimation has always been a challenge for the software industrial and academic software engineering communities. Many studies have focused on effort estimation methods to improve the estimation accuracy of software effort. Although data quality is one of important factors for accurate effort estimation, most of the work has not considered it. In this paper, we investigate the influence of outlier elimination on the accuracy of software effort estimation through empirical studies applying two outlier elimination methods(Least trimmed square regression and K-means clustering) and three effort estimation methods(Least squares regression, Neural network and Bayesian network) associatively. The empirical studies are performed using two industry data sets(the ISBSG Release 9 and the Bank data set which consists of the project data collected from a bank in Korea) with or without outlier elimination.

Design of Pedestrian Detection and Tracking System Using HOG-PCA and Object Tracking Algorithm (HOG-PCA와 객체 추적 알고리즘을 이용한 보행자 검출 및 추적 시스템 설계)

  • Jeon, Pil-Han;Park, Chan-Jun;Kim, Jin-Yul;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.682-691
    • /
    • 2017
  • In this paper, we propose the fusion design methodology of both pedestrian detection and object tracking system realized with the aid of HOG-PCA based RBFNN pattern classifier. The proposed system includes detection and tracking parts. In the detection part, HOG features are extracted from input images for pedestrian detection. Dimension reduction is also dealt with in order to improve detection performance as well as processing speed by using PCA which is known as a typical dimension reduction method. The reduced features can be used as the input of the FCM-based RBFNNs pattern classifier to carry out the pedestrian detection. FCM-based RBFNNs pattern classifier consists of condition, conclusion, and inference parts. FCM clustering algorithm is used as the activation function of hidden layer. In the conclusion part of network, polynomial functions such as constant, linear, quadratic and modified quadratic are regarded as connection weights and their coefficients of polynomial function are estimated by LSE-based learning. In the tracking part, object tracking algorithms such as mean shift(MS) and cam shift(CS) leads to trace one of the pedestrian candidates nominated in the detection part. Finally, INRIA person database is used in order to evaluate the performance of the pedestrian detection of the proposed system while MIT pedestrian video as well as indoor and outdoor videos obtained from IC&CI laboratory in Suwon University are exploited to evaluate the performance of tracking.

Movement Route Generation Technique through Location Area Clustering (위치 영역 클러스터링을 통한 이동 경로 생성 기법)

  • Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.355-357
    • /
    • 2022
  • In this paper, as a positioning technology for predicting the movement path of a moving object using a recurrent neural network (RNN) model, which is a deep learning network, in an indoor environment, continuous location information is used to predict the path of a moving vehicle within a local path. We propose a movement path generation technique that can reduce decision errors. In the case of an indoor environment where GPS information is not available, the data set must be continuous and sequential in order to apply the RNN model. However, Wi-Fi radio fingerprint data cannot be used as RNN data because continuity is not guaranteed as characteristic information about a specific location at the time of collection. Therefore, we propose a movement path generation technique for a vehicle moving a local path in an indoor environment by giving the necessary sequential location continuity to the RNN model.

  • PDF

Proposing the Method for Improving the Forecast Accuracy of Loan Underwriting (대출심사의 예측 정확도 향상을 위한 방법 제안)

  • Yang, Yu-Young;Park, Sang-Sung;Shin, Young-Geun;Jang, Dong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1419-1429
    • /
    • 2010
  • Industry structure and environment of the domestic bank have been changed by an influx of large foreign-banks and advanced financial products when the currency crisis erupted in Korea. In a competitive environment, accurate forecasts of changes and tendencies are essential for the survival and development. Forecast of whether to approve loan applications for customer or not is an important matter because that is related to profit generation and risk management on the bank. Therefore, this paper proposes the method to improve forecast accuracy of loan underwriting. Processes in experiments are as follows. First, we select the predictor variables which affect significantly to the result of loan underwriting by correlation analysis and feature selection technique, and then cluster the customers by the 2-Step clustering technique based on selected variables. Second, we find the most accurate forecasting model for each clustering by applying LR, NN and SVM. Finally, we compare the forecasting accuracy of the proposed method with the forecasting accuracy of existing application way.

An Efficient BotNet Detection Scheme Exploiting Word2Vec and Accelerated Hierarchical Density-based Clustering (Word2Vec과 가속화 계층적 밀집도 기반 클러스터링을 활용한 효율적 봇넷 탐지 기법)

  • Lee, Taeil;Kim, Kwanhyun;Lee, Jihyun;Lee, Suchul
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.11-20
    • /
    • 2019
  • Numerous enterprises, organizations and individual users are exposed to large DDoS (Distributed Denial of Service) attacks. DDoS attacks are performed through a BotNet, which is composed of a number of computers infected with a malware, e.g., zombie PCs and a special computer that controls the zombie PCs within a hierarchical chain of a command system. In order to detect a malware, a malware detection software or a vaccine program must identify the malware signature through an in-depth analysis, and these signatures need to be updated in priori. This is time consuming and costly. In this paper, we propose a botnet detection scheme that does not require a periodic signature update using an artificial neural network model. The proposed scheme exploits Word2Vec and accelerated hierarchical density-based clustering. Botnet detection performance of the proposed method was evaluated using the CTU-13 dataset. The experimental result shows that the detection rate is 99.9%, which outperforms the conventional method.

Influence of Self-driving Data Set Partition on Detection Performance Using YOLOv4 Network (YOLOv4 네트워크를 이용한 자동운전 데이터 분할이 검출성능에 미치는 영향)

  • Wang, Xufei;Chen, Le;Li, Qiutan;Son, Jinku;Ding, Xilong;Song, Jeongyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.157-165
    • /
    • 2020
  • Aiming at the development of neural network and self-driving data set, it is also an idea to improve the performance of network model to detect moving objects by dividing the data set. In Darknet network framework, the YOLOv4 (You Only Look Once v4) network model was used to train and test Udacity data set. According to 7 proportions of the Udacity data set, it was divided into three subsets including training set, validation set and test set. K-means++ algorithm was used to conduct dimensional clustering of object boxes in 7 groups. By adjusting the super parameters of YOLOv4 network for training, Optimal model parameters for 7 groups were obtained respectively. These model parameters were used to detect and compare 7 test sets respectively. The experimental results showed that YOLOv4 can effectively detect the large, medium and small moving objects represented by Truck, Car and Pedestrian in the Udacity data set. When the ratio of training set, validation set and test set is 7:1.5:1.5, the optimal model parameters of the YOLOv4 have highest detection performance. The values show mAP50 reaching 80.89%, mAP75 reaching 47.08%, and the detection speed reaching 10.56 FPS.

Implementation of Unsupervised Nonlinear Classifier with Binary Harmony Search Algorithm (Binary Harmony Search 알고리즘을 이용한 Unsupervised Nonlinear Classifier 구현)

  • Lee, Tae-Ju;Park, Seung-Min;Ko, Kwang-Eun;Sung, Won-Ki;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.354-359
    • /
    • 2013
  • In this paper, we suggested the method for implementation of unsupervised nonlinear classification using Binary Harmony Search (BHS) algorithm, which is known as a optimization algorithm. Various algorithms have been suggested for classification of feature vectors from the process of machine learning for pattern recognition or EEG signal analysis processing. Supervised learning based support vector machine or fuzzy c-mean (FCM) based on unsupervised learning have been used for classification in the field. However, conventional methods were hard to apply nonlinear dataset classification or required prior information for supervised learning. We solved this problems with proposed classification method using heuristic approach which took the minimal Euclidean distance between vectors, then we assumed them as same class and the others were another class. For the comparison, we used FCM, self-organizing map (SOM) based on artificial neural network (ANN). KEEL machine learning datset was used for simulation. We concluded that proposed method was superior than other algorithms.

Empirical Research on Search model of Web Service Repository (웹서비스 저장소의 검색기법에 관한 실증적 연구)

  • Hwang, You-Sub
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.173-193
    • /
    • 2010
  • The World Wide Web is transitioning from being a mere collection of documents that contain useful information toward providing a collection of services that perform useful tasks. The emerging Web service technology has been envisioned as the next technological wave and is expected to play an important role in this recent transformation of the Web. By providing interoperable interface standards for application-to-application communication, Web services can be combined with component-based software development to promote application interaction and integration within and across enterprises. To make Web services for service-oriented computing operational, it is important that Web services repositories not only be well-structured but also provide efficient tools for an environment supporting reusable software components for both service providers and consumers. As the potential of Web services for service-oriented computing is becoming widely recognized, the demand for an integrated framework that facilitates service discovery and publishing is concomitantly growing. In our research, we propose a framework that facilitates Web service discovery and publishing by combining clustering techniques and leveraging the semantics of the XML-based service specification in WSDL files. We believe that this is one of the first attempts at applying unsupervised artificial neural network-based machine-learning techniques in the Web service domain. We have developed a Web service discovery tool based on the proposed approach using an unsupervised artificial neural network and empirically evaluated the proposed approach and tool using real Web service descriptions drawn from operational Web services repositories. We believe that both service providers and consumers in a service-oriented computing environment can benefit from our Web service discovery approach.

A Study on Korean Local Governments' Operation of Participatory Budgeting System : Classification by Support Vector Machine Technique (한국 지방자치단체의 주민참여예산제도 운영에 관한 연구 - Support Vector Machine 기법을 이용한 유형 구분)

  • Junhyun Han;Jaemin Ryou;Jayon Bae;Chunghyeok Im
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.461-466
    • /
    • 2024
  • Korean local governments operates the participatory budgeting system autonomously. This study is to classify these entities into clusters. Among the diverse machine learning methodologies(Neural Network, Rule Induction(CN2), KNN, Decision Tree, Random Forest, Gradient Boosting, SVM, Naïve Bayes), the Support Vector Machine technique emerged as the most efficacious in the analysis of 2022 Korean municipalities data. The first cluster C1 is characterized by minimal committee activity but a substantial allocation of participatory budgeting; another cluster C3 comprises cities that exhibit a passive stance. The majority of cities falls into the final cluster C2 which is noted for its proactive engagement in. Overall, most Korean local government operates the participatory busgeting system in good shape. Only a small number of cities is less active in this system. We anticipate that analyzing time-series data from the past decade in follow-up studies will further enhance the reliability of classifying local government types regarding participatory budgeting.

Design of Robust Face Recognition System Realized with the Aid of Automatic Pose Estimation-based Classification and Preprocessing Networks Structure

  • Kim, Eun-Hu;Kim, Bong-Youn;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2388-2398
    • /
    • 2017
  • In this study, we propose a robust face recognition system to pose variations based on automatic pose estimation. Radial basis function neural network is applied as one of the functional components of the overall face recognition system. The proposed system consists of preprocessing and recognition modules to provide a solution to pose variation and high-dimensional pattern recognition problems. In the preprocessing part, principal component analysis (PCA) and 2-dimensional 2-directional PCA ($(2D)^2$ PCA) are applied. These functional modules are useful in reducing dimensionality of the feature space. The proposed RBFNNs architecture consists of three functional modules such as condition, conclusion and inference phase realized in terms of fuzzy "if-then" rules. In the condition phase of fuzzy rules, the input space is partitioned with the use of fuzzy clustering realized by the Fuzzy C-Means (FCM) algorithm. In conclusion phase of rules, the connections (weights) are realized through four types of polynomials such as constant, linear, quadratic and modified quadratic. The coefficients of the RBFNNs model are obtained by fuzzy inference method constituting the inference phase of fuzzy rules. The essential design parameters (such as the number of nodes, and fuzzification coefficient) of the networks are optimized with the aid of Particle Swarm Optimization (PSO). Experimental results completed on standard face database -Honda/UCSD, Cambridge Head pose, and IC&CI databases demonstrate the effectiveness and efficiency of face recognition system compared with other studies.