• Title/Summary/Keyword: Neural Network. Clustering

Search Result 317, Processing Time 0.027 seconds

Neural-based Blind Modeling of Mini-mill ASC Crown

  • Lee, Gang-Hwa;Lee, Dong-Il;Lee, Seung-Joon;Lee, Suk-Gyu;Kim, Shin-Il;Park, Hae-Doo;Park, Seung-Gap
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.577-582
    • /
    • 2002
  • Neural network can be trained to approximate an arbitrary nonlinear function of multivariate data like the mini-mill crown values in Automatic Shape Control. The trained weights of neural network can evaluate or generalize the process data outside the training vectors. Sometimes, the blind modeling of the process data is necessary to compare with the scattered analytical model of mini-mill process in isolated electro-mechanical forms. To come up with a viable model, we propose the blind neural-based range-division domain-clustering piecewise-linear modeling scheme. The basic ideas are: 1) dividing the range of target data, 2) clustering the corresponding input space vectors, 3)training the neural network with clustered prototypes to smooth out the convergence and 4) solving the resulting matrix equations with a pseudo-inverse to alleviate the ill-conditioning problem. The simulation results support the effectiveness of the proposed scheme and it opens a new way to the data analysis technique. By the comparison with the statistical regression, it is evident that the proposed scheme obtains better modeling error uniformity and reduces the magnitudes of errors considerably. Approximatly 10-fold better performance results.

The Design of Granular-based Radial Basis Function Neural Network by Context-based Clustering (Context-based 클러스터링에 의한 Granular-based RBF NN의 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1230-1237
    • /
    • 2009
  • In this paper, we develop a design methodology of Granular-based Radial Basis Function Neural Networks(GRBFNN) by context-based clustering. In contrast with the plethora of existing approaches, here we promote a development strategy in which a topology of the network is predominantly based upon a collection of information granules formed on a basis of available experimental data. The output space is granulated making use of the K-Means clustering while the input space is clustered with the aid of a so-called context-based fuzzy clustering. The number of information granules produced for each context is adjusted so that we satisfy a certain reconstructability criterion that helps us minimize an error between the original data and the ones resulting from their reconstruction involving prototypes of the clusters and the corresponding membership values. In contrast to "standard" Radial Basis Function neural networks, the output neuron of the network exhibits a certain functional nature as its connections are realized as local linear whose location is determined by the values of the context and the prototypes in the input space. The other parameters of these local functions are subject to further parametric optimization. Numeric examples involve some low dimensional synthetic data and selected data coming from the Machine Learning repository.

Forecasting High-Level Ozone Concentration with Fuzzy Clustering (퍼지 클러스터링을 이용한 고농도오존예측)

  • 김재용;김성신;왕보현
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.191-194
    • /
    • 2001
  • The ozone forecasting systems have many problems because the mechanism of the ozone concentration is highly complex, nonlinear, and nonstationary. Also, the results of prediction are not a good performance so far, especially in the high-level ozone concentration. This paper describes the modeling method of the ozone prediction system using neuro-fuzzy approaches and fuzzy clustering. The dynamic polynomial neural network (DPNN) based upon a typical algorithm of GMDH (group method of data handling) is a useful method for data analysis, identification of nonlinear complex system, and prediction of a dynamical system.

  • PDF

Adaptive Clustering Algorithm for Recycling Cell Formation: An Application of Fuzzy ART Neural Networks

  • Seo, Kwang-Kyu;Park, Ji-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2137-2147
    • /
    • 2004
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end-of-life phase. Disposal products have the uncertainties of product status by usage influences during product use phase, and recycling cells are formed design, process and usage attributes. In order to deal with the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. Fuzzy C-mean algorithm and a heuristic approach based on fuzzy ART neural network is suggested. Especially, the modified Fuzzy ART neural network is shown that it has a good clustering results and gives an extension for systematically generating alternative solutions in the recycling cell formation problem. Disposal refrigerators are shown as examples.

Design of Granular-based Neurocomputing Networks for Modeling of Linear-Type Superconducting Power Supply (리니어형 초전도 전원장치 모델링을 위한 입자화 기반 Neurocomputing 네트워크 설계)

  • Park, Ho-Sung;Chung, Yoon-Do;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1320-1326
    • /
    • 2010
  • In this paper, we develop a design methodology of granular-based neurocomputing networks realized with the aid of the clustering techniques. The objective of this paper is modeling and evaluation of approximation and generalization capability of the Linear-Type Superconducting Power Supply (LTSPS). In contrast with the plethora of existing approaches, here we promote a development strategy in which a topology of the network is predominantly based upon a collection of information granules formed on a basis of available experimental data. The underlying design tool guiding the development of the granular-based neurocomputing networks revolves around the Fuzzy C-Means (FCM) clustering method and the Radial Basis Function (RBF) neural network. In contrast to "standard" Radial Basis Function neural networks, the output neuron of the network exhibits a certain functional nature as its connections are realized as local linear whose location is determined by the membership values of the input space with the aid of FCM clustering. To modeling and evaluation of performance of the linear-type superconducting power supply using the proposed network, we describe a detailed characteristic of the proposed model using a well-known NASA software project data.

Unification of neural network with a hierarchical pattern recognition

  • Park, Chang-Mock;Wang, Gi-Nam
    • Proceedings of the ESK Conference
    • /
    • 1996.10a
    • /
    • pp.197-205
    • /
    • 1996
  • Unification of neural network with a hierarchical pattern recognition is presented for recognizing large set of objects. A two-step identification procedure is developed for pattern recognition: coarse and fine identification. The coarse identification is designed for finding a class of object while the fine identification procedure is to identify a specific object. During the training phase a course neural network is trained for clustering larger set of reference objects into a number of groups. For training a fine neural network, expert neural network is also trained to identify a specific object within a group. The presented idea can be interpreted as two step identification. Experimental results are given to verify the proposed methodology.

  • PDF

Character Recognition of Vehicle Number Plate using Modular Neural Network (모듈라 신경망을 이용한 자동차 번호판 문자인식)

  • Park, Chang-Seok;Kim, Byeong-Man;Seo, Byung-Hoon;Lee, Kwang-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.409-415
    • /
    • 2003
  • Recently, the modular learning are very popular and receive much attention for pattern classification. The modular learning method based on the "divide and conquer" strategy can not only solve the complex problems, but also reach a better result than a single classifier′s on the learning quality and speed. In the neural network area, some researches that take the modular learning approach also have been made to improve classification performance. In this paper, we propose a simple modular neural network for characters recognition of vehicle number plate and evaluate its performance on the clustering methods of feature vectors used in constructing subnetworks. We implement two clustering method, one is grouping similar feature vectors by K-means clustering algorithm, the other grouping unsimilar feature vectors by our proposed algorithm. The experiment result shows that our algorithm achieves much better performance.

Parallel Structure Modeling of Nonlinear Process Using Clustering Method (클러스터링 기법을 이용한 비선형 공정의 병렬구조 모델링)

  • 박춘성;최재호;오성권;안태천
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.383-386
    • /
    • 1997
  • In this paper, We proposed a parallel structure of the Neural Network model to nonlinear complex system. Neural Network was used as basic model which has learning ability and high tolerence level. This paper, we used Neural Network which has BP(Error Back Propagation Algorithm) model. But it sometimes has difficulty to append characteristic of input data to nonlinear system. So that, I used HCM(hard c-Means) method of clustering technique to append property of input data. Clustering Algorithms are used extensively not only to organized categorize data, but are also useful for data compression and model construction. Gas furance, a sewage treatment process are used to evaluate the performance of the proposed model and then obtained higher accuracy than other previous medels.

  • PDF

Clustering of Incomplete Data Using Autoencoder and fuzzy c-Means Algorithm (AutoEncoder와 FCM을 이용한 불완전한 데이터의 군집화)

  • 박동철;장병근
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.700-705
    • /
    • 2004
  • Clustering of incomplete data using the Autoencoder and the Fuzzy c-Means(PCM) is proposed in this paper. The Proposed algorithm, called Optimal Completion Autoencoder Fuzzy c-Means(OCAEFCM), utilizes the Autoencoder Neural Network (AENN) and the Gradiant-based FCM (GBFCM) for optimal completion of missing data and clustering of the reconstructed data. The proposed OCAEFCM is applied to the IRIS data and a data set from a financial institution to evaluate the performance. When compared with the existing Optimal Completion Strategy FCM (OCSFCM), the OCAEFCM shows 18%-20% improvement of performance over OCSFCM.

Comparative Analysis of Learning Methods of Fuzzy Clustering-based Neural Network Pattern Classifier (퍼지 클러스터링기반 신경회로망 패턴 분류기의 학습 방법 비교 분석)

  • Kim, Eun-Hu;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1541-1550
    • /
    • 2016
  • In this paper, we introduce a novel learning methodology of fuzzy clustering-based neural network pattern classifier. Fuzzy clustering-based neural network pattern classifier depicts the patterns of given classes using fuzzy rules and categorizes the patterns on unseen data through fuzzy rules. Least squares estimator(LSE) or weighted least squares estimator(WLSE) is typically used in order to estimate the coefficients of polynomial function, but this study proposes a novel coefficient estimate method which includes advantages of the existing methods. The premise part of fuzzy rule depicts input space as "If" clause of fuzzy rule through fuzzy c-means(FCM) clustering, while the consequent part of fuzzy rule denotes output space through polynomial function such as linear, quadratic and their coefficients are estimated by the proposed local least squares estimator(LLSE)-based learning. In order to evaluate the performance of the proposed pattern classifier, the variety of machine learning data sets are exploited in experiments and through the comparative analysis of performance, it provides that the proposed LLSE-based learning method is preferable when compared with the other learning methods conventionally used in previous literature.