A new approach to reliability analysis of rubble mound breakwater using neural network is proposed. At first, a neural network model which can estimate the stability number of any breakwaters for some design conditions is trained. Then, the neural network model is integrated with Monte Carlo simulation technique in order to calculate probability of failure for the breakwater. The proposed technique is compared with conventional approach using empirical formula.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2001.05a
/
pp.369-373
/
2001
In this paper, we proposes the steps adopted to construct the neural network model for GMAW welds. Conventional, automated process generally involves sophisticated sensing and control techniques applied to various processing parameters. Welding parameters are influenced by numerous factors, such as welding current, arc voltage, torch travel speed, electrode condition and shielding gas type and flow rate etc. In traditional work, the structural mathematical models have been used to represent this relationship. Contrary to the traditional model method, neural network models are based on non-parametric modeling techniques. For the welding process modeling, the non-linearity at well as the coupled input characteristics makes it apparent that the neural network is probably the most suitable candidate for this task. Finally, a suitable proposal to improve the construction of the model has also been presented in the paper.
Journal of the Korean Institute of Intelligent Systems
/
v.21
no.4
/
pp.449-455
/
2011
In this paper, a time-delay problem of a tele-operated control system is investigated and compensated by neural network. The smith predictor requires an exact system model to deal with a time-delay in the system. To compensate for modeling errors in the configuration of the Smith predictor, a neural network approach is presented. Based on forming the Smith predictor structure, the radial basis function(RBF) neural network estimator is used. Simulation and experimental studies are conducted to show the functionality of the proposed method.
Proceedings of the Korean Society of Precision Engineering Conference
/
1994.10a
/
pp.510-514
/
1994
This paper deals with an application of neural network to camera calibration with wide angle lens and 2-D range finding. Wide angle lens has an advantage of having wide view angles for mobile environment recognition ans robot eye in hand system. But, it has severe radial distortion. Multilayer neural network is used for the calibration of the camera considering lens distortion, and is trained it by error back-propagation method. MLP can map between camera image plane and plane the made by structured light. In experiments, Calibration of camers was executed with calibration chart which was printed by using laser printer with 300 d.p.i. resolution. High distortion lens, COSMICAR 4.2mm, was used to see whether the neural network could effectively calibrate camera distortion. 2-D range of several objects well be measured with laser range finding system composed of camera, frame grabber and laser structured light. The performance of 3-D range finding system was evaluated through experiments and analysis of the results.
Journal of the Korean Society for Precision Engineering
/
v.16
no.6
/
pp.133-140
/
1999
In this study, a monitoring method to detect chip disposal state in drilling system based on neural network was proposed and its performance was evaluated. If chip flow is bad during drilling, not only the static component but also the fluctuation of dynamic component of drilling. Drilling torque is indirectly measured by sensing spindle motor power through a AC spindle motor drive system. Spindle motor power being measured drilling, four quantities such as variance/mean, mean absolute deviation, gradient, event count were calculated as feature vectors and then presented to the neural network to make a decision on chip disposal state. The selected features are sensitive to the change of chip disposal state but comparatively insensitive to the change of drilling condition. The 3 layerd neural network with error back propagation algorithm has been used. Experimental results show that the proposed monitoring system can successfully recognize the chip disposal state over a wide range of drilling condition even though it is trained under a certain drilling condition.
Proceedings of the Korean Society of Precision Engineering Conference
/
1995.04b
/
pp.113-117
/
1995
Grinding operations is accomplished by rotating a gfinding wheel with lots of random abrasive at high speed, and its object is generally obtained the fanal workpiece surface of high quality as well as the maximization of workpiece removal rate. But, especiallysince grinding operations is related with a large amount of functional parameter, it is actually difficult to therapy that the grinding trouble occurs during the grinding process. Therefore, we trytodesign grinding trouble-shooting system utilizing the back-propagation model of neural network. The conceptual method is produced byidentifying the four parameters derived from the grinding power, and we are design te to the grinding trouble-shooting system on the basis of their data. In this paper, cognition and therapy method tothe grinding trouble which utilizes neural network based four identified models are suggested, and implementation results of computer simulation with respect to the grinding burn and chatter vibration is presented.
Proceedings of the Korean Society of Precision Engineering Conference
/
1994.10a
/
pp.131-137
/
1994
Detection of grinding trouble occuring during the grinding process is classified into two types, i.e, based on the quantitative and qualitative knowledge. But, since the grinding operation is especially related with a large amount of functional parameters, it is actually defficult to cope with the grinding troubles occuring during process. Therefore, grinding trouble-shooting has difficulty in satisfying the requirement from the user. To cope with the grinding troubles occuring during the process, the application of neural network is on effective way. In this study, we identify the four parameters derived from the AE(Acoustic Emission) signals and present the grinding trouble-shooting system utilizing a back-propagation model of the neural network.
Proceedings of the Computational Structural Engineering Institute Conference
/
2002.10a
/
pp.321-329
/
2002
Artificial neural network has been used for damage assessment by many researchers, but there are still some barriers that must be overcome to improve its accuracy and efficiency. The major problems with the conventional neural network are the necessity of many training patterns for neural network teaming process and ambiguity in the relationship of neural network structure to the convergence of solution. In this paper, the PNN is used as a pattern classifier to detect the damages of the railway bridge using dynamic response. The comparison between the mode shape and the natural frequency of structure as training pattern is investigated for approriate selection of the training pattern in the damage detection of railway bridge using the PNN.
The Journal of the Korea institute of electronic communication sciences
/
v.5
no.2
/
pp.145-151
/
2010
This paper proposes a reverse filtering system of sound field obtaining a state of sound field transmitted from two sounds, using an adaptive filter and neural network. The proposed system uses the reverse filtering method with calculating and renewing a coefficient of a filter, using least mean square. Based on training the neural network, experiments confirm that the proposed system is effective for a simple waveform with non-linear distortion, by using neural network and adaptive filtering method.
In this study, it is developed that the system for effective prediction of residual stresses by the back-propagation algorithm using the neural network. To achieve This goal, the series experiment were carried out and measured the residual stresses using the sectional method. Using the experimental results, the optional control algorithms using a neural network should be developed in order to reduce the effect of the external disturbances during GMA welding processes. Then the results obtained from this study were compared between the measured and calculated results, weld guality might be controlled by the neural network based on backpropagation algorithm. This system can no only help to understand the interaction between the process parameters and residual stress, but also improve the quantity control for welded structures.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.