• Title/Summary/Keyword: Neural Network-based

Search Result 5,700, Processing Time 0.036 seconds

Prediction of Failure Probability of Breakwater using Neural Network (신경망을 활용한 사석식 방파제의 파괴확률예측)

  • Kim, Dong-Hyawn;Park, Woo-Sun;Han, Sang-Hun
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.347-351
    • /
    • 2003
  • A new approach to reliability analysis of rubble mound breakwater using neural network is proposed. At first, a neural network model which can estimate the stability number of any breakwaters for some design conditions is trained. Then, the neural network model is integrated with Monte Carlo simulation technique in order to calculate probability of failure for the breakwater. The proposed technique is compared with conventional approach using empirical formula.

A Modular Neural Network for The GMA Welding Process Modelling (Modular 신경 회로망을 이용한 GMA 용접 프로세스 모델링)

  • 김경민;강종수;박중조;송명현;배영철;정양희
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.369-373
    • /
    • 2001
  • In this paper, we proposes the steps adopted to construct the neural network model for GMAW welds. Conventional, automated process generally involves sophisticated sensing and control techniques applied to various processing parameters. Welding parameters are influenced by numerous factors, such as welding current, arc voltage, torch travel speed, electrode condition and shielding gas type and flow rate etc. In traditional work, the structural mathematical models have been used to represent this relationship. Contrary to the traditional model method, neural network models are based on non-parametric modeling techniques. For the welding process modeling, the non-linearity at well as the coupled input characteristics makes it apparent that the neural network is probably the most suitable candidate for this task. Finally, a suitable proposal to improve the construction of the model has also been presented in the paper.

  • PDF

Design of a Time-delay Compensator Using Neural Network In a Tele-operation System (원격 제어 시스템에서의 신경망을 이용한 시간 지연 보상 제어기 설계)

  • Choi, Ho-Jin;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.449-455
    • /
    • 2011
  • In this paper, a time-delay problem of a tele-operated control system is investigated and compensated by neural network. The smith predictor requires an exact system model to deal with a time-delay in the system. To compensate for modeling errors in the configuration of the Smith predictor, a neural network approach is presented. Based on forming the Smith predictor structure, the radial basis function(RBF) neural network estimator is used. Simulation and experimental studies are conducted to show the functionality of the proposed method.

Neural Network Based Camera Calibration and 2-D Range Finding (신경회로망을 이용한 카메라 교정과 2차원 거리 측정에 관한 연구)

  • 정우태;고국원;조형석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.510-514
    • /
    • 1994
  • This paper deals with an application of neural network to camera calibration with wide angle lens and 2-D range finding. Wide angle lens has an advantage of having wide view angles for mobile environment recognition ans robot eye in hand system. But, it has severe radial distortion. Multilayer neural network is used for the calibration of the camera considering lens distortion, and is trained it by error back-propagation method. MLP can map between camera image plane and plane the made by structured light. In experiments, Calibration of camers was executed with calibration chart which was printed by using laser printer with 300 d.p.i. resolution. High distortion lens, COSMICAR 4.2mm, was used to see whether the neural network could effectively calibrate camera distortion. 2-D range of several objects well be measured with laser range finding system composed of camera, frame grabber and laser structured light. The performance of 3-D range finding system was evaluated through experiments and analysis of the results.

  • PDF

Chip Disposal State Monitoring in Drilling Using Neural Network (신경회로망을 이용한 드릴공정에서의 칩 배출 상태 감시)

  • , Hwa-Young;Ahn, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.133-140
    • /
    • 1999
  • In this study, a monitoring method to detect chip disposal state in drilling system based on neural network was proposed and its performance was evaluated. If chip flow is bad during drilling, not only the static component but also the fluctuation of dynamic component of drilling. Drilling torque is indirectly measured by sensing spindle motor power through a AC spindle motor drive system. Spindle motor power being measured drilling, four quantities such as variance/mean, mean absolute deviation, gradient, event count were calculated as feature vectors and then presented to the neural network to make a decision on chip disposal state. The selected features are sensitive to the change of chip disposal state but comparatively insensitive to the change of drilling condition. The 3 layerd neural network with error back propagation algorithm has been used. Experimental results show that the proposed monitoring system can successfully recognize the chip disposal state over a wide range of drilling condition even though it is trained under a certain drilling condition.

  • PDF

A Study on the Grinding Trouble-Shooting Utilizing the Neural Network (Neural Network을 응용한 연삭가공 트러블 인식.처리에 관한 연구)

  • 하만경;김건희;곽재삼;송지복;이재경;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.113-117
    • /
    • 1995
  • Grinding operations is accomplished by rotating a gfinding wheel with lots of random abrasive at high speed, and its object is generally obtained the fanal workpiece surface of high quality as well as the maximization of workpiece removal rate. But, especiallysince grinding operations is related with a large amount of functional parameter, it is actually difficult to therapy that the grinding trouble occurs during the grinding process. Therefore, we trytodesign grinding trouble-shooting system utilizing the back-propagation model of neural network. The conceptual method is produced byidentifying the four parameters derived from the grinding power, and we are design te to the grinding trouble-shooting system on the basis of their data. In this paper, cognition and therapy method tothe grinding trouble which utilizes neural network based four identified models are suggested, and implementation results of computer simulation with respect to the grinding burn and chatter vibration is presented.

  • PDF

Detection of Grinding Troubles Utilizing a Neural Network (Neural Network을 이용한 연삭가공의 트러블 검지)

  • 곽재섭;송지복;김건희;하만경;김희술;이재경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.131-137
    • /
    • 1994
  • Detection of grinding trouble occuring during the grinding process is classified into two types, i.e, based on the quantitative and qualitative knowledge. But, since the grinding operation is especially related with a large amount of functional parameters, it is actually defficult to cope with the grinding troubles occuring during process. Therefore, grinding trouble-shooting has difficulty in satisfying the requirement from the user. To cope with the grinding troubles occuring during the process, the application of neural network is on effective way. In this study, we identify the four parameters derived from the AE(Acoustic Emission) signals and present the grinding trouble-shooting system utilizing a back-propagation model of the neural network.

  • PDF

Structural Damage Assessment Based on PNN -Application to Railway Bridge (확률신경망을 이용한 구조물 손상평가-철도교 적용)

  • 조효남;이성칠;오달수;최윤석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.321-329
    • /
    • 2002
  • Artificial neural network has been used for damage assessment by many researchers, but there are still some barriers that must be overcome to improve its accuracy and efficiency. The major problems with the conventional neural network are the necessity of many training patterns for neural network teaming process and ambiguity in the relationship of neural network structure to the convergence of solution. In this paper, the PNN is used as a pattern classifier to detect the damages of the railway bridge using dynamic response. The comparison between the mode shape and the natural frequency of structure as training pattern is investigated for approriate selection of the training pattern in the damage detection of railway bridge using the PNN.

  • PDF

Reverse Filtering of Sound Field by Adaptive Filter and Neural Network (적응필터 및 신경회로망에 의한 음장의 역 필터링)

  • Choi, Jae-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.2
    • /
    • pp.145-151
    • /
    • 2010
  • This paper proposes a reverse filtering system of sound field obtaining a state of sound field transmitted from two sounds, using an adaptive filter and neural network. The proposed system uses the reverse filtering method with calculating and renewing a coefficient of a filter, using least mean square. Based on training the neural network, experiments confirm that the proposed system is effective for a simple waveform with non-linear distortion, by using neural network and adaptive filtering method.

A Study on the Prediction of Welding Residual Stresses and the Selection of Optimal Welding Condition using Neural Network (신경회로망을 이용한 용접잔류응력 예측 및 최적의 용접조건 선정에 관한 연구)

  • 차용훈;이연신;성백섭
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.58-64
    • /
    • 2001
  • In this study, it is developed that the system for effective prediction of residual stresses by the back-propagation algorithm using the neural network. To achieve This goal, the series experiment were carried out and measured the residual stresses using the sectional method. Using the experimental results, the optional control algorithms using a neural network should be developed in order to reduce the effect of the external disturbances during GMA welding processes. Then the results obtained from this study were compared between the measured and calculated results, weld guality might be controlled by the neural network based on backpropagation algorithm. This system can no only help to understand the interaction between the process parameters and residual stress, but also improve the quantity control for welded structures.

  • PDF