• Title/Summary/Keyword: Neural Network-based

Search Result 5,592, Processing Time 0.026 seconds

Nonlinear System Control Using Othogonal Neural Network (직교 신경망을 이용한 비선형 시스템의 제어)

  • Kim, Sung-Sik;Lee, Young-Seog;Ahn, Dae-Chan;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.397-399
    • /
    • 1997
  • This paper presents an Orthogonal Neural Network based on orthogonal functions and applies the network to nonlinear system control. The Orthogonal Neural Network doesn't have the problems of traditional feedforward neural networks such as the determination of initial weights and the numbers of layers and processing elements. In this paper, Orthogonal Neural Network is modified already introduced one by input transformation. The results show that the modified neural network has the better performance than existing one and performance of controller using this network is good.

  • PDF

Development of an Optimal EEG and Artifact Classifier Using Neural Network Operating Characteristics (신경망 운영특성곡선을 이용한 최적의 뇌파 및 Artifact 분류기 구성)

  • Lee, T.Y.;Ahn, C.B.;Lee, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.160-163
    • /
    • 1995
  • An optimal EEG and artifact classifier is proposed using neural network operating characteristics. The neural network operating characteristics are two dimensional parametric representations of the right and false identification probabilities of the network classifier. Since the EEG and EP signals acquired from multi -channel electrodes placed on the head surface are often interfered by other relatively large physiological signals such as electromyogram (EMG) or electroculogram (EOG), the removal of the artifact-affected EEGs is one of the key elements in neuro-functional mapping. Conventionally this task has been carried out by human experts spending lots of examination time. Using the neural-network based classification, human expert's efforts and time can be substantially reduced. From experiments, the neural-network based classification performs as good as human experts: variation of decisions between the neural network and human expert appears even smaller than that between human experts.

  • PDF

Speech Processing System Using a Noise Reduction Neural Network Based on FFT Spectrums

  • Choi, Jae-Seung
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.2
    • /
    • pp.162-167
    • /
    • 2012
  • This paper proposes a speech processing system based on a model of the human auditory system and a noise reduction neural network with fast Fourier transform (FFT) amplitude and phase spectrums for noise reduction under background noise environments. The proposed system reduces noise signals by using the proposed neural network based on FFT amplitude spectrums and phase spectrums, then implements auditory processing frame by frame after detecting voiced and transitional sections for each frame. The results of the proposed system are compared with the results of a conventional spectral subtraction method and minimum mean-square error log-spectral amplitude estimator at different noise levels. The effectiveness of the proposed system is experimentally confirmed based on measuring the signal-to-noise ratio (SNR). In this experiment, the maximal improvement in the output SNR values with the proposed method is approximately 11.5 dB better for car noise, and 11.0 dB better for street noise, when compared with a conventional spectral subtraction method.

Experimental Studies of Vision Based Position Tracking Control of Mobile Robot Using Neural Network (신경회로망을 이용한 비전 기반 이동 로봇의 위치제어에 대한 실험적 연구)

  • Jung, Seul;Jang, Pyung-Soo;Won, Moon-Chul;Hong, Sub
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.7
    • /
    • pp.515-526
    • /
    • 2003
  • Tutorial contents of kinematics and dynamics of a wheeled drive mobile robot are presented. Based on the dynamic model, simulation studies of position tracking of a mobile robot are performed. The control structure of several position control algorithms using visual feedback are proposed and their performances are compared. In order to compensate for uncertainties from unknown dynamics and ignored dynamic effects such as slip conditions, neural network based position control schemes are proposed. Experiments are conducted and the results show the performance of the vision based neural network control scheme fumed out to be the best among several proposed schemes.

Layout Optimization Method of Railway Transportation Route Based on Deep Convolution Neural Network

  • Cong, Qiao;Qifeng, Gao;Huayan, Xing
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.46-54
    • /
    • 2023
  • To improve the railway transportation capacity and maximize the benefits of railway transportation, a method for layout optimization of railway transportation route based on deep convolution neural network is proposed in this study. Considering the transportation cost of railway transportation and other factors, the layout model of railway transportation route is constructed. Based on improved ant colony algorithm, the layout model of railway transportation route was optimized, and multiple candidate railway transportation routes were output. Taking into account external information such as regional information, weather conditions and actual information of railway transportation routes, optimization of the candidate railway transportation routes obtained by the improved ant colony algorithm was performed based on deep convolution neural network, and the optimal railway transportation routes were output, and finally layout optimization of railway transportation routes was realized. The experimental results show that the proposed method can obtain the optimal railway transportation route, the shortest transportation length, and the least transportation time, maximizing the interests of railway transportation enterprises.

Neural Network-based Modeling of Industrial Safety System in Korea (신경회로망 기반 우리나라 산업안전시스템의 모델링)

  • Gi Heung Choi
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • It is extremely important to design safety-guaranteed industrial processes because such process determine the ultimate outcomes of industrial activities, including worker safety. Application of artificial intelligence (AI) in industrial safety involves modeling industrial safety systems by using vast amounts of safety-related data, accident prediction, and accident prevention based on predictions. As a preliminary step toward realizing AI-based industrial safety in Korea, this study discusses neural network-based modeling of industrial safety systems. The input variables that are the most discriminatory relative to the output variables of industrial safety processes are selected using two information-theoretic measures, namely entropy and cross entropy. Normalized frequency and severity of industrial accidents are selected as the output variables. Our simulation results confirm the effectiveness of the proposed neural network model and, therefore, the feasibility of extending the model to include more input and output variables.

Fuzzy-ARTMAP based Multi-User Detection

  • Lee, Jung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.3A
    • /
    • pp.172-178
    • /
    • 2012
  • This paper studies the application of a fuzzy-ARTMAP (FAM) neural network to multi-user detector (MUD) for direct sequence (DS)-code division multiple access (CDMA) system. This method shows new solution for solving the problems, such as complexity and long training, which is found when implementing the previously developed neural-basis MUDs. The proposed FAM based MUD is fast and easy to train and includes capabilities not found in other neural network approaches; a small number of parameters, no requirements for the choice of initial weights, automatic increase of hidden units, no risk of getting trapped in local minima, and the capabilities of adding new data without retraining previously trained data. In simulation studies, binary signals were generated at random in a linear channel with Gaussian noise. The performance of FAM based MUD is compared with other neural net based MUDs in terms of the bit error rate.

Non-linear PLS based on non-linear principal component analysis and neural network (비선형 주성분해석과 신경망에 기반한 비선형 PLS)

  • 손정현;정신호;송상옥;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.394-394
    • /
    • 2000
  • This Paper proposes a new nonlinear partial least square method that extends the linear PLS. Proposed nonlinear PLS uses self-organizing feature map as PLS outer relation and multilayer neural network as PLS inner regression method.

  • PDF

Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method

  • Golafshani, Emadaldin M.;Pazouki, Gholamreza
    • Computers and Concrete
    • /
    • v.22 no.4
    • /
    • pp.419-437
    • /
    • 2018
  • The compressive strength of self-compacting concrete (SCC) containing fly ash (FA) is highly related to its constituents. The principal purpose of this paper is to investigate the efficiency of hybrid fuzzy radial basis function neural network with biogeography-based optimization (FRBFNN-BBO) for predicting the compressive strength of SCC containing FA based on its mix design i.e., cement, fly ash, water, fine aggregate, coarse aggregate, superplasticizer, and age. In this regard, biogeography-based optimization (BBO) is applied for the optimal design of fuzzy radial basis function neural network (FRBFNN) and the proposed model, implemented in a MATLAB environment, is constructed, trained and tested using 338 available sets of data obtained from 24 different published literature sources. Moreover, the artificial neural network and three types of radial basis function neural network models are applied to compare the efficiency of the proposed model. The statistical analysis results strongly showed that the proposed FRBFNN-BBO model has good performance in desirable accuracy for predicting the compressive strength of SCC with fly ash.

User-to-User Matching Services through Prediction of Mutual Satisfaction Based on Deep Neural Network

  • Kim, Jinah;Moon, Nammee
    • Journal of Information Processing Systems
    • /
    • v.18 no.1
    • /
    • pp.75-88
    • /
    • 2022
  • With the development of the sharing economy, existing recommender services are changing from user-item recommendations to user-user recommendations. The most important consideration is that all users should have the best possible satisfaction. To achieve this outcome, the matching service adds information between users and items necessary for the existing recommender service and information between users, so higher-level data mining is required. To this end, this paper proposes a user-to-user matching service (UTU-MS) employing the prediction of mutual satisfaction based on learning. Users were divided into consumers and suppliers, and the properties considered for recommendations were set by filtering and weighting. Based on this process, we implemented a convolutional neural network (CNN)-deep neural network (DNN)-based model that can predict each supplier's satisfaction from the consumer perspective and each consumer's satisfaction from the supplier perspective. After deriving the final mutual satisfaction using the predicted satisfaction, a top recommendation list is recommended to all users. The proposed model was applied to match guests with hosts using Airbnb data, which is a representative sharing economy platform. The proposed model is meaningful in that it has been optimized for the sharing economy and recommendations that reflect user-specific priorities.