• 제목/요약/키워드: Neural Network controller

검색결과 1,125건 처리시간 0.028초

An Neural Network Direct Controller for Nonlinear Systems

  • Nam Kee Hwan;Bae Cheo Soo;Cho Hyeon Seob;Ra Sang Dong
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 학술대회지
    • /
    • pp.491-493
    • /
    • 2004
  • In this paper, a direct controller for nonlinear plants using a neural network is presented. The controller is composed of an approximate controller and a neural network auxiliary controller. The approximate controller gives the rough control and the neural network controller gives the complementary signal to further reduce the output tracking error. This method does not put too much restriction on the type of nonlinear plant to be controlled. In this method, a RBF neural network is trained and the system has a stable performance for the inputs it has been trained for. Simulation results show that it is very effective and can realize a satisfactory control of the nonlinear system.

  • PDF

Direct Controller for Nonlinear System Using a Neural Network

  • 배철수;박영철;남기환;강용석;김태우;황선기;김현열;김문환
    • 한국정보전자통신기술학회논문지
    • /
    • 제5권1호
    • /
    • pp.7-12
    • /
    • 2012
  • In this paper, a direct controller for nonlinear plants using a neural network is presented. The controller is composed of an approximate controller and a neural network auxiliary controller. The approximate controller gives the rough control and the neural network controller gives the complementary signal to further reduce the output tracking error. This method does not put too much restriction on the type of nonlinear plant to be controlled. In this method, a RBF neural network is trained and the system has a stable performance for the inputs it has been trained for. Simulation results show that it is very effective and can realize a satisfactory control of the nonlinear system.

신경망-퍼지 하이브리드 제어기 설계 (Design of Hybrid Controller Using Neural Network-Fuzzy)

  • 신위재
    • 융합신호처리학회논문지
    • /
    • 제3권1호
    • /
    • pp.54-60
    • /
    • 2002
  • 본 논문에서는 신경망제어기의 출력을 보상하는 퍼지보상기를 갖는 신경망-퍼지 하이브리드 제어기에 관하여 제안하였다. 학습이 완료된 신경망제어기를 사용하더라도 예상치 못한 외란으로 인해 플랜트의 출력이 좋지 못한 경우가 있는데, 이것을 적절하게 조절해 주기 위해 퍼지보상기를 사용하여 원하는 결과를 얻을 수 있도록 하였다. 그리고 플랜트의 역모델 신경망을 학습시킨 결과를 이용하여 주 신경망의 가중치를 변경시킴으로서 원하는 플랜트의 동적 특성을 얻게 된다. 2차 플랜트를 통한 모의실험 결과, 제안한 속도제어기가 신경망제어기보다 더 좋은 응답 특성을 가짐을 확인할 수 있다. 제안한 속도제어기의 성능을 확인하기 위해 유압 서보시스템을 대상으로 DSP 프로세서를 사용하여 구현한 후 실험 결과를 관찰하였다.

  • PDF

인공 신경회로망을 이용한 추적 제어기의 구성 및 최적 추적 제어기와의 비교 연구 (Design of tracking controller Using Artificial Neural Network & comparison with an Optimal Track ing Controller)

  • 박영문;이규원;최면송
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.51-53
    • /
    • 1993
  • This paper proposes a design of the tracking controller using artificial neural network and the compare the result with a result of optimal controller. In practical use, conventional Optimal controller has some limits. First, optimal controller can be designed only for linear system. Second, for many systems state observation is difficult or sometimes impossible. But the controller using artificial neural network does not need mathmatical model of the system including state observation, so it can be used for both linear and nonlinear system with no additional cost for nonlinearity. Designed multi layer neural network controller is composed of two parts, feedforward controller gives a steady state input & feedback controller gives transient input via minimizing the quadratic cost function. From the comparison of the results of the simulation of linear & nonlinear plant, the plant controlled by using neural network controller shows the trajectory similar to that of the plant controlled by an optimal controller.

  • PDF

자기저항 센서를 이용한 지능형 자율주행 전기자동차의 신경회로망 조향 제어기 개발 (Development of the Neural Network Steering Controller based on Magneto-Resistive Sensor of Intelligent Autonomous Electric Vehicle)

  • 김태곤;손석준;유영재;김의선;임영철;이주상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.196-196
    • /
    • 2000
  • This paper describes a lateral guidance system of an autonomous vehicle, using a neural network model of magneto-resistive sensor and magnetic fields. The model equation was compared with experimental sensing data. We found that the experimental result has a negligible difference from the modeling equation result. We verified that the modeling equation can be used in simulations. As the neural network controller acquires magnetic field values(B$\_$x/, B$\_$y/, B$\_$z/) from the three-axis, the controller outputs a steering angle. The controller uses the back-propagation algorithms of neural network. The learning pattern acquisition was obtained using computer simulation, which is more exact than human driving. The simulation program was developed in order to verify the acquisition of the teaming pattern, teaming itself, and the adequacy of the design controller. The performance of the controller can be verified through simulation. The real autonomous electric vehicle using neural network controller verified good results.

  • PDF

신경회로망을 이용한 비선형 시스팀 제어의 실험적 연구 (Experimental Studies of Neural Network Control Technique for Nonlinear Systern)

  • 임선빈;정슬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.195-195
    • /
    • 2000
  • In this paper, intelligent control method using neural network as a nonlinear controller is presented, Neural network controller is implemented on DSP board in PC to make real time computing possible, On-line training algorithm for neural network control is proposed, As a test-bed, a large a-x table was build and interface with PC has been implemented, Experimental results under different PD controller gains show excellent position tracking for circular trajectory compared with those for PD controller only.

  • PDF

Process Control Using n Neural Network Combined with the Conventional PID Controllers

  • Lee, Moonyong;Park, Sunwon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권3호
    • /
    • pp.196-200
    • /
    • 2000
  • A neural controller for process control is proposed that combines a conventional multi-loop PID controller with a neural network. The concept of target signal based on feedback error is used fur on-line learning of the neural network. This controller is applied to distillation column control to illustrate its effectiveness. The result shows that the proposed neural controller can cope well with disturbance, strong interactions, time delays without any prior knowledge of the process.

  • PDF

Process Control Using a Neural Network Combined with the Conventional PID Controllers

  • Lee, Moonyong;Park, Sunwon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권2호
    • /
    • pp.136-139
    • /
    • 2000
  • A neural controller for process control is proposed that combines a conventional multi-loop PID controller with a neural network. The concept of target signal based on feedback error is used for on-line learning of the neural network. This controller is applied to distillation column control to illustrate its effectiveness. The result shows that the proposed neural controller can cope well with disturbance, strong interactions, time delays without any prior knowledge of the process.

  • PDF

신경회로망을 이용한 PID 제어기의 이득조정 (Neural Network Method for Tuning PID Gains)

  • 문석우;이종호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 A
    • /
    • pp.476-479
    • /
    • 1992
  • This paper presents a neural network method for tuning PlD controller of a time-varying process. Three gains of PlD controller are tuned for a certain desirable response pattern by back-propagation neural network. The neural network is trained using changes of output features vs. changes of PlD gains. But sometimes it needs longer training time and larger structure to train the correlation between the process and controller on entire region of the process. The difficulty in system identification is that the inverse function of the system can not be clearly stated. To cope with the problem, we do not train the neural network to respond correctly for the entire regions but train for only local region where the system is heading toward by training the neural network and tuning of the PlD controller. It may be trained for fine-tuning itself. Simulation results show that the adaptive PID controller using neural network trained in the local area performs remarkably for time-varying second order process.

  • PDF

신경 회로망 기반 퍼지형 PID 제어기 설계 (Neural Network based Fuzzy Type PID Controller Design)

  • 임정흠;권정진;이창구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.86-86
    • /
    • 2000
  • This paper describes a neural network based fuzzy type PID control scheme. The PID controller is being widely used in industrial applications. however, it is difficult to determine the appropriate PID gains for (he nonlinear system control. In this paper, we re-analyzed the fuzzy controller as conventional PID controller structure, and proposed a neural network based fuzzy type PID controller whose scaling factors were adjusted automatically. The value of initial scaling factors of the proposed controller were determined on the basis of the conventional PID controller parameters tuning methods and then they were adjusted by using neural network control techniques. Proposed controller was simple in structure and computational burden was small so that on-line adaptation was easy to apply to. The result of practical experiment on the magnetic levitation system, which is known to be hard nonlinear, showed the proposed controller's excellent performance.

  • PDF