• Title/Summary/Keyword: Neural Network Theory

Search Result 373, Processing Time 0.025 seconds

Threat Map Generation Scheme based on Neural Network for Robot Path Planning (로봇 전역경로계획을 위한 신경망 기반 위협맵 생성 기법)

  • Kwak, Hwy-Kuen;Kim, Hyung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4482-4488
    • /
    • 2014
  • This paper proposes the creation scheme of a threat map for robot global path planning. The threat map was generated using neural network theory by analyzing the robot's armament state and the menace information of an enemy or obstacle. In addition, the performance of the suggested method was verified using the compared result of the damage amount and existing robot path data.

Air Pollution Prediction Model Using Artificial Neural Network And Fuzzy Theory

  • Baatarchuluun, Khaltar;Sung, Young-Suk;Lee, Malrey
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.149-155
    • /
    • 2020
  • Air pollution is a problem of environmental health risk in big cities. Recently, researchers have proposed using various artificial intelligence technologies to predict air pollution. The proposed model is Cooperative of Artificial Neural Network (ANN) and Fuzzy Inference System (FIS), to predict air pollution of Korean cities using Python. Data air pollutant variables were collected and the Air Korean Web site air quality index was downloaded. This paper's aim was to predict on the health risks and the very unhealthy values of air pollution. We have predicted the air pollution of the environment based on the air quality index. According to the results of the experiment, our model was able to predict a very unhealthy value.

A Stochastic Nonlinear Analysis of Daily Runoff Discharge Using Artificial Intelligence Technique (인공지능기법을 이용한 일유출량의 추계학적 비선형해석)

  • 안승섭;김성원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.6
    • /
    • pp.54-66
    • /
    • 1997
  • The objectives of this study is to introduce and apply neural network theory to real hydrologic systems for stochastic nonlinear predicting of daily runoff discharge in the river catchment. Back propagation algorithm of neural network model is applied for the estimation of daily stochastic runoff discharge using historical daily rainfall and observed runoff discharge. For the fitness and efficiency analysis of models, the statistical analysis is carried out between observed discharge and predicted discharge in the chosen runoff periods. As the result of statistical analysis, method 3 which has much processing elements of input layer is more prominent model than other models(method 1, method 2) in this study.Therefore, on the basis of this study, further research activities are needed for the development of neural network algorithm for the flood prediction including real-time forecasting and for the optimal operation system of dams and so forth.

  • PDF

Optimization of 3D target feature-map using modular mART neural network (모듈구조 mART 신경망을 이용한 3차원 표적 피쳐맵의 최적화)

  • 차진우;류충상;서춘원;김은수
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.2
    • /
    • pp.71-79
    • /
    • 1998
  • In this paper, we propose a new mART(modified ART) neural network by combining the winner neuron definition method of SOM(self-organizing map) and the real-time adaptive clustering function of ART(adaptive resonance theory) and construct it in a modular structure, for the purpose of organizing the feature maps of three dimensional targets. Being constructed in a modular structure, the proposed modular mART can effectively prevent the clusters from representing multiple classes and can be trained to organze two dimensional distortion invariant feature maps so as to recognize targets with three dimensional distortion. We also present the recognition result and self-organization perfdormance of the proposed modular mART neural network after carried out some experiments with 14 tank and fighter target models.

  • PDF

A Study on DSP Conrolled Photovoltaic System with Maximum Power Tracking

  • Ahn, Jeong-Joon;Kim, Jae-Mun;Kim, Yuen-Chung;Lee, Joung-Ho;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.966-971
    • /
    • 1998
  • The studies on the photovoltaic system are extensively exhaustible and broadly available resourse as a future energy supply. In this paper, a new maximum power point tracker(MPPT) using neural network theory is proposed to improve energy conversion efficiency. The boost converter and neural network controller(NNC) were employed so that the operating point of solar cell was located at the Maximum Power Point. And the back propagation algorithm with one input layer of two inputs(E, CE) and output layer(cnntrol value) was applied to train a neural network. Simulation and experimental results show that the performance of NNC in MPPT of photovoltaic array is better than that of controller based upon the Hill Climbing Method.

  • PDF

A Study on the PID controller auto-tuning using neural network learning (신경망 학습을 이용한 PID제어기 자동동조에 관한 연구)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.458-460
    • /
    • 2009
  • The parameters of PID controller should be readjusted whenever system character change. In spite of a rapid development of control theory, this work needs much time and effort of expert. In this paper, to resolve this defect, after the sample of parameters in the changeable limits of system character is obtained, these parametrs are used as desired values of back propagation learning algorithm, also neural network auto tuner for PID controller is proposed by determing the optimum structure of neural network. Simulation results demonstrate that auto-tuning proper to system character can work well.

  • PDF

A Study on Multi-site Rainfall Prediction Model using Real-time Meteorological Data (실시간 기상자료를 이용한 다지점 강우 예측모형 연구)

  • Jung, Jae-Sung;lee, Jang-Choon;Park, Young-Ki
    • Journal of Environmental Science International
    • /
    • v.6 no.3
    • /
    • pp.205-211
    • /
    • 1997
  • For the prediction of multi-site rainfall with radar data and ground meteorological data, a rainfall prediction model was proposed, which uses the neural network theory, a kind of artifical Intelligence technique. The Input layer of the prediction model was constructed with current ground meteorological data, their variation, moving vectors of rain- fall field and digital terrain of the measuring site, and the output layer was constructed with the predicted rainfall up to 3 hours. In the application of the prediction model to the Pyungchang river basin, the learning results of neural network prediction model showed more Improved results than the parameter estimation results of an existing physically based model. And the proposed model comparisonally well predicted the time distribution of ralnfall.

  • PDF

Booming Index Development of Interior Sound Quality on a Passenger Car Using Artificial Neural Network (신경망회로를 이용한 부밍음질의 인덱스 개발에 관한 연구)

  • 이상권;채희창;박동철;정승균
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.445-451
    • /
    • 2003
  • Booming sound is one of the most important interior sound of a passenger car. The conventional booming noise research was focused on the reduction of the A-weighted sound pressure level. However A-weighted sound pressure level cannot give the whole story about the booming sound of a passenger car. In this paper, we employed sound metrics, which are the subjective parameters, used in psycoacoustics. According to recent research results. the relation between sound metrics and subjective evaluation is very complex and has nonlinear characteristics. In order to estimate this nonlinear relationship, artificial neural network theory has been applied to derivation of sound quality index for booming sound of a passenger car.

Investigation of random fatigue life prediction based on artificial neural network

  • Jie Xu;Chongyang Liu;Xingzhi Huang;Yaolei Zhang;Haibo Zhou;Hehuan Lian
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.435-449
    • /
    • 2023
  • Time domain method and frequency domain method are commonly used in the current fatigue life calculation theory. The time domain method has complicated procedures and needs a large amount of calculation, while the frequency domain method has poor applicability to different materials and different spectrum, and improper selection of spectrum model will lead to large errors. Considering that artificial neural network has strong ability of nonlinear mapping and generalization, this paper applied this technique to random fatigue life prediction, and the effect of average stress was taken into account, thereby achieving more accurate prediction result of random fatigue life.

Flood Forecasting Study using Neural Network Theory and Hydraulic Routing (신경망 이론과 수리학적 홍수추적에 의한 홍수예측에 관한 연구)

  • Jee, Hong Kee;Choo, Yeon Moon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.207-221
    • /
    • 2014
  • Recently, due to global warming, climate change has affected short time concentrated local rain and unexpected heavy rain which is increasingly causing life and property damage. Therefore, this paper studies the characteristic of localized heavy rain and flash flood in Nakdong basin study area by applying Data Mining method to predict flood and constructing water level predicting model. For the verification neural network from Data Mining method and hydraulic flood routing was used for flood from July 1989 to September 1999 in Nakdong point and Iseon point was used to compare flood level change between observed water level and SAM (Slope Area Method). In this research, the study area was divided into three cases in which each point's flood discharge, water level was considered to construct the model for hydraulic flood routing and neural network based on artificial intelligence which can be made from simple input data used for comparison analysis and comparison evaluation according to actual water level and from the model.