• Title/Summary/Keyword: Neural Network Self Adaptive Control

Search Result 50, Processing Time 0.029 seconds

Design of a Self-tuning Controller with a PID Structure Using Neural Network (신경회로망을 이용한 PID구조를 갖는 자기동조제어기의 설계)

  • Cho, Won-Chul;Jeong, In-Gab;Shim, Tae-Eun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.1-8
    • /
    • 2002
  • This paper presents a generalized minimum-variance self-tuning controller with a PID structure using neural network which adapts to the changing parameters of the nonlinear system with nonminimum phase behavior and time delays. The neural network is used to estimate the controller parameters, and the control output is obtained through estimated controller parameter. In order to demonstrate the effectiveness of the proposed algorithm, the computer simulation is done to adapt the nonlinear nonminimum phase system with time delays and changed system parameter after a constant time. The proposed method compared with direct adaptive controller using neural network.

Voltage Control of Generator using Neural Network Self Adaptative Control (신경망 자율 적응제어를 이용한 발전기의 전압제어)

  • Park, Wal-Seo;Oh, Hun;Yoo, Seok-Ju;La, Seong-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.103-107
    • /
    • 2009
  • PI controller is widely used as voltage control system of generator. However when a generator system has various characters of continuance, a new PI parameter decision for accurate control is a hard task as method of solving this problem, in this paper, the method to generator voltage control using Neural Network self adaptive control is presented. A property continuous feedback control gain of voltage control system is decided by a rule of delta learning. The function of proposed control method is verified by voltage control experiment results of DC generator.

Congestion Control of TCP Network Using a Self-Recurrent Wavelet Neural Network (자기회귀 웨이블릿 신경 회로망을 이용한 TCP 네트워크 혼잡제어)

  • Kim, Jae-Man;Park, Jin-Bae;Choi, Yoon-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.325-327
    • /
    • 2005
  • In this paper, we propose the design of active queue management (AQM) control system using the self-recurrent wavelet neural network (SRWNN). By regulating the queue length close to reference value, AQM can control the congestions in TCP network. The SRWNN is designed to perform as a feedback controller for TCP dynamics. The parameters of network are tunes to minimize the difference between the queue length of TCP dynamic model and the output of SRWNN using gradient-descent method. We evaluate the performances of the proposed AQM approach through computer simulations.

  • PDF

A neural network architecture for dynamic control of robot manipulators

  • Ryu, Yeon-Sik;Oh, Se-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1113-1119
    • /
    • 1989
  • Neural network control has many innovative potentials for intelligent adaptive control. Among many, it promises real time adaption, robustness, fault tolerance, and self-learning which can be achieved with little or no system models. In this paper, a dynamic robot controller has been developed based on a backpropagation neural network. It gradually learns the robot's dynamic properties through repetitive movements being initially trained with a PD controller. Its control performance has been tested on a simulated PUMA 560 demonstrating fast learning and convergence.

  • PDF

Intelligent Control by Immune Network Algorithm Based Auto-Weight Function Tuning

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.120.2-120
    • /
    • 2002
  • In this paper auto-tuning scheme of weight function in the neural networks has been suggested by immune algorithm for nonlinear process. A number of structures of the neural networks are considered as learning methods for control system. A general view is provided that they are the special cases of either the membership functions or the modification of network structure in the neural networks. On the other hand, since the immune network system possesses a self organizing and distributed memory, it is thus adaptive to its external environment and allows a PDP (parallel distributed processing) network to complete patterns against the environmental situation. Also. It can provi..

  • PDF

Self-Recurrent Neural Network Based Sliding Mode Control of Biped Robot (이족 로봇을 위한 자기 회귀 신경 회로망 기반 슬라이딩 모드 제어)

  • Lee, Sin-Ho;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1860-1861
    • /
    • 2006
  • In this paper, we design a robust controller of biped robot system with uncertainties, using recurrent neural network. In our proposed control system, we use the self-recurrent wavelet neural network (SRWNN). The SRWNN makes up for the weak points in wavelet neural network(WNN). While the WNN has fast convergence ability, it dose not have a memory. So the WNN cannot confront unexpected change of the system. However, the SRWNN, having advantage of WNN such as fast convergence, can easily encounter the unexpected change of the system. For stable walking control of biped robot, we use sliding mode control (SMC). Here, uncertainties are predicted by SRWNN. The weights of SRWNN are trained by adaptive laws based on Lyapunov stability theorem. Finally, we carry out computer simulations with a biped robot model to verify the effectiveness of the proposed control system,.

  • PDF

Application of An Adaptive Self Organizing Feature Map to X-Ray Image Segmentation

  • Kim, Byung-Man;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1315-1318
    • /
    • 2003
  • In this paper, a neural network based approach using a self-organizing feature map is proposed for the segmentation of X ray images. A number of algorithms based on such approaches as histogram analysis, region growing, edge detection and pixel classification have been proposed for segmentation of general images. However, few approaches have been applied to X ray image segmentation because of blur of the X ray image and vagueness of its edge, which are inherent properties of X ray images. To this end, we develop a new model based on the neural network to detect objects in a given X ray image. The new model utilizes Mumford-Shah functional incorporating with a modified adaptive SOFM. Although Mumford-Shah model is an active contour model not based on the gradient of the image for finding edges in image, it has some limitation to accurately represent object images. To avoid this criticism, we utilize an adaptive self organizing feature map developed earlier by the authors.[1] It's learning rule is derived from Mumford-Shah energy function and the boundary of blurred and vague X ray image. The evolution of the neural network is shown to well segment and represent. To demonstrate the performance of the proposed method, segmentation of an industrial part is solved and the experimental results are discussed in detail.

  • PDF

Optimization of Dynamic Neural Networks Considering Stability and Design of Controller for Nonlinear Systems (안정성을 고려한 동적 신경망의 최적화와 비선형 시스템 제어기 설계)

  • 유동완;전순용;서보혁
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.189-199
    • /
    • 1999
  • This paper presents an optimization algorithm for a stable Self Dynamic Neural Network(SDNN) using genetic algorithm. Optimized SDNN is applied to a problem of controlling nonlinear dynamical systems. SDNN is dynamic mapping and is better suited for dynamical systems than static forward neural network. The real-time implementation is very important, and thus the neuro controller also needs to be designed such that it converges with a relatively small number of training cycles. SDW has considerably fewer weights than DNN. Since there is no interlink among the hidden layer. The object of proposed algorithm is that the number of self dynamic neuron node and the gradient of activation functions are simultaneously optimized by genetic algorithms. To guarantee convergence, an analytic method based on the Lyapunov function is used to find a stable learning for the SDNN. The ability and effectiveness of identifying and controlling a nonlinear dynamic system using the proposed optimized SDNN considering stability is demonstrated by case studies.

  • PDF

Adaptive-Tuning of PID Controller using Self-Recurrent Neural Network (자기순환 신경망을 이용한 PID 제어기의 적응동조)

  • 박광현;허진영;하홍곤
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.121-124
    • /
    • 2001
  • In industrial actual control system, PID controller has been used with its high delicate control system in position control system. PID controller has simple structure and superior ability in several characteristics. When the response of system is changed by delay time, variable load , disturbances and external environment, control gain of PID controller must be readjusted on the system dynamic characteristics. Therefore, a control ability of PID controller is degraded when th control gain is inappropriately determined. When the response characteristic of system is changed under a condition, control gain of PID controller must be changed adaptively to be a waited response of system. In this paper an adaptive-tuning type PID controller is constructed by self-recurrent Neural Network(SRNN). applying back-propagation(BP) algorithm. Form the result of computer simulation in the proposed controller, its usefulness is verified.

  • PDF

Fuzzy Neural Network Active Disturbance Rejection Control for Two-Wheeled Self-Balanced Robot

  • Wang, Chao;Jianliang, Xiao;Zhang, Cheng
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.510-523
    • /
    • 2022
  • Considering the problems of poor control effect, weak disturbance rejection ability and adaptive ability of two-wheeled self-balanced robot (TWSBR) systems on undulating roads, this paper proposes a fuzzy neural network active disturbance rejection controller (FNNADRC), that is based on fuzzy neural network (FNN) for online correction of active disturbance rejection controller (ADRC)'s nonlinear control rate. Firstly, the dynamic model of the TWSBR is established and decoupled, the extended state observer (ESO) is used to compensate dynamically and linearize the upright and displacement subsystems. Then, the nonlinear PD control rate and FNN are designed, and the FNN is used to modify the control parameters of the nonlinear PD control rate in real time. Finally, the proposed control strategy is simulated and compared with the traditional ADRC and fuzzy active disturbance rejection controller (FADRC). The simulation results show that the control effect of the proposed control strategy is slightly better than ADRC and FADRC.