• Title/Summary/Keyword: Neural Net

Search Result 766, Processing Time 0.024 seconds

Study on the Self Diagnostic Monitoring System for an Air-Operated Valve : Algorithm for Diagnosing Defects

  • Kim Wooshik;Chai Jangbom;Choi Hyunwoo
    • Nuclear Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.219-228
    • /
    • 2004
  • [1] and [2] present an approach to diagnosing possible defects in the mechanical systems of a nuclear power plant. In this paper, by using a fault library as a database and training data, we develop a diagnostic algorithm 1) to decide whether an Air Operated Valve system is sound or not and 2) to identify the defect from which an Air-Operated Valve system suffers, if any. This algorithm is composed of three stages: a neural net stage, a non-neural net stage, and an integration stage. The neural net stage is a simple perceptron, a pattern-recognition module, using a neural net. The non-neural net stage is a simple pattern-matching algorithm, which translates the degree of matching into a corresponding number. The integration stage collects each output and makes a decision. We present a simulation result and confirm that the developed algorithm works accurately, if the input matches one in the database.

Neural Net Application Test for the Damage Detection of a Scaled-down Steel Truss Bridge (축소모형 강트러스 교량의 손상검출을 위한 신경회로망의 적용성 검토)

  • Kim, Chi-Yeop;Kwon, Il-Bum;Choi, Man-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.4
    • /
    • pp.137-147
    • /
    • 1998
  • The neural net application was tried to develop the technique for monitoring the health status of a steel truss bridge which was scaled down to 1/15 of the real bridge for the laboratory experiments. The damage scenarios were chosen as 7 cases. The dynamic behavior, which was changed due to the breakage of the members, of the bridge was investigated by finite element analysis. The bridge consists of single spam, and eight (8) main structural subsystems. The loading vehicle, which weighs as 100 kgf, was operated by the servo-motor controller. The accelerometers were bonded on the surface of 7 cross-beams to measure the dynamic behavior induced by the abnormal structural condition. Artificial neural network technique was used to determine the severity of the damage. At first, the neural net was learnt by the results of finite element analysis, and also, the maximum detection error was 3.65 percents. Another neural net was also learnt, and verified by the experimental results, and in this case, the maximum detection error was 1.05 percents. In future study, neural net is necessary to be learnt and verified by various data from the real bridge.

  • PDF

A Neural Net Type Process Model for Enhancing Learning Compensation Function in Hot Strip Finishing Rolling Mill (열연 마무리 압연기에서 압연속도 학습보상기능개선을 위한 신경망형 공정 모델)

  • Hong, Seong-Cheol;Lee, Haiyoung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.59-67
    • /
    • 2013
  • This paper presents a neural net type process model for enhancing learning compensation function in hot strip finishing rolling mill. Adequate input and output variables of process model are chosen, the proposed model was designed as single layer neural net. Equivalent carbon content, strip thickness and rolling speed are suggested as input variables, and looper's manipulation variable is proposed as output variable. According to simulation result using process data to show the validity of the proposed process model, neural net type process model's outputs give almost similar data to process output under same input conditions.

Implementation of Modular Neural Net for Fault Diagnosis in Power System (전력 계통 사고구간 판정에의 모듈형 신경 회로망의 구현)

  • Kim, Kwang-Ho;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.224-227
    • /
    • 1989
  • In this paper, The implementation of modular neural net for fault diagnosis in power system is presented. Until now, there have been many researches on expert system for fault diagnosis. On expert system, a lot of time for searching goal is needed. But, neural net processes with high speed, as it has parallel distributed processing structure. So neural net has good performance in on-line fault diagnosis. For fault diagnosis in large power system, the constitution of modular neural net with partition of large power system is presented.

  • PDF

Automatic Expansion of ConceptNet by Using Neural Tensor Networks (신경 텐서망을 이용한 컨셉넷 자동 확장)

  • Choi, Yong Seok;Lee, Gyoung Ho;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.549-554
    • /
    • 2016
  • ConceptNet is a common sense knowledge base which is formed in a semantic graph whose nodes represent concepts and edges show relationships between concepts. As it is difficult to make knowledge base integrity, a knowledge base often suffers from incompleteness problem. Therefore the quality of reasoning performed over such knowledge bases is sometimes unreliable. This work presents neural tensor networks which can alleviate the problem of knowledge bases incompleteness by reasoning new assertions and adding them into ConceptNet. The neural tensor networks are trained with a collection of assertions extracted from ConceptNet. The input of the networks is two concepts, and the output is the confidence score, telling how possible the connection between two concepts is under a specified relationship. The neural tensor networks can expand the usefulness of ConceptNet by increasing the degree of nodes. The accuracy of the neural tensor networks is 87.7% on testing data set. Also the neural tensor networks can predict a new assertion which does not exist in ConceptNet with an accuracy 85.01%.

Mixed Model Assembly Sequencing using Neural Net (신경망을 이용한 혼류조립순서 결정)

  • Won, Young-Cheol;Koh, Jae-Moon
    • IE interfaces
    • /
    • v.10 no.2
    • /
    • pp.51-56
    • /
    • 1997
  • This paper concerns with the problem of mixed model assembly sequencing using neural net. In recent years, because of two characteristics of it, massive parallelism and learning capability, neural nets have emerged to solve the problems for which more conventional computational approaches have proven ineffective. This paper proposes a method using neural net that can consider line balancing and grouping problems simultaneously. In order to solve the mixed model assembly sequencing of the motor industry, this paper uses the modified ART1 algorithm.

  • PDF

Multi-resolution DenseNet based acoustic models for reverberant speech recognition (잔향 환경 음성인식을 위한 다중 해상도 DenseNet 기반 음향 모델)

  • Park, Sunchan;Jeong, Yongwon;Kim, Hyung Soon
    • Phonetics and Speech Sciences
    • /
    • v.10 no.1
    • /
    • pp.33-38
    • /
    • 2018
  • Although deep neural network-based acoustic models have greatly improved the performance of automatic speech recognition (ASR), reverberation still degrades the performance of distant speech recognition in indoor environments. In this paper, we adopt the DenseNet, which has shown great performance results in image classification tasks, to improve the performance of reverberant speech recognition. The DenseNet enables the deep convolutional neural network (CNN) to be effectively trained by concatenating feature maps in each convolutional layer. In addition, we extend the concept of multi-resolution CNN to multi-resolution DenseNet for robust speech recognition in reverberant environments. We evaluate the performance of reverberant speech recognition on the single-channel ASR task in reverberant voice enhancement and recognition benchmark (REVERB) challenge 2014. According to the experimental results, the DenseNet-based acoustic models show better performance than do the conventional CNN-based ones, and the multi-resolution DenseNet provides additional performance improvement.

Architectures of Convolutional Neural Networks for the Prediction of Protein Secondary Structures (단백질 이차 구조 예측을 위한 합성곱 신경망의 구조)

  • Chi, Sang-Mun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.5
    • /
    • pp.728-733
    • /
    • 2018
  • Deep learning has been actively studied for predicting protein secondary structure based only on the sequence information of the amino acids constituting the protein. In this paper, we compared the performances of the convolutional neural networks of various structures to predict the protein secondary structure. To investigate the optimal depth of the layer of neural network for the prediction of protein secondary structure, the performance according to the number of layers was investigated. We also applied the structure of GoogLeNet and ResNet which constitute building blocks of many image classification methods. These methods extract various features from input data, and smooth the gradient transmission in the learning process even using the deep layer. These architectures of convolutional neural networks were modified to suit the characteristics of protein data to improve performance.

Load Flow Calculation by Neural Networks (신경회로적인 전력조류 계산법에 대한 연구)

  • Kim, Jae-Joo;Park, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.329-332
    • /
    • 1991
  • This paper presents an algorithm to reduce the time to solve Power Equations using a Neural Net. The Neural Net is trained with samples obtained through the conventional AC Load Flow. With these samples, the Neural Net is constructed and has the function of a linear interpolation network. Given arbitrary load level, this Neural Net generates voltage magnitudes and angles which are linear interpolation of real and reactive powers. Obtained voltage magnitudes and angles are substituted to Power Equations, Real and reactive powers are found. Thus, a new sample is generated. This new experience modifies weight matrix. Continuing to modify the weight matrix, the correct solution is achieved. comparing this method with AC Load flow, this method is faster. If we consider parallel processing, this method is far faster than conventional ones.

  • PDF

An Optimized Deep Learning Techniques for Analyzing Mammograms

  • Satish Babu Bandaru;Natarajasivan. D;Rama Mohan Babu. G
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.39-48
    • /
    • 2023
  • Breast cancer screening makes extensive utilization of mammography. Even so, there has been a lot of debate with regards to this application's starting age as well as screening interval. The deep learning technique of transfer learning is employed for transferring the knowledge learnt from the source tasks to the target tasks. For the resolution of real-world problems, deep neural networks have demonstrated superior performance in comparison with the standard machine learning algorithms. The architecture of the deep neural networks has to be defined by taking into account the problem domain knowledge. Normally, this technique will consume a lot of time as well as computational resources. This work evaluated the efficacy of the deep learning neural network like Visual Geometry Group Network (VGG Net) Residual Network (Res Net), as well as inception network for classifying the mammograms. This work proposed optimization of ResNet with Teaching Learning Based Optimization (TLBO) algorithm's in order to predict breast cancers by means of mammogram images. The proposed TLBO-ResNet, an optimized ResNet with faster convergence ability when compared with other evolutionary methods for mammogram classification.