In this paper, an auto-tuning method for fuzzy controller based on the neural network is presented. The backpropagated error of neural emulator offers the path which reforms the fuzzy controller's membership functions and fuzzy rule, and used for speed control of switched reluctance motor. The experiments are performed to verify the capability of proposed control method on 6/4 salient type SRM. The results show that fuzzy-neural controller is suitable for wide speed range.
Tunyasrirut, S.;Ngamwiwit, J.;Furuya, T.;Yamamoto, Y.
제어로봇시스템학회:학술대회논문집
/
제어로봇시스템학회 2000년도 제15차 학술회의논문집
/
pp.480-480
/
2000
In this paper, we proposed a fuzzy-neuro controller to control the speed of wound rotor induction motor with slip energy recovery. The speed is limited at some range of sub-synchronous speed of the rotating magnetic field. Control speed by adjusting resistance value in the rotor circuit that occurs the efficiency of power are reduced, because of the slip energy is lost when it passes through the rotor resistance. The control system is designed to maintain efficiency of motor. Recently, the emergence of artificial neural networks has made it conductive to integrate fuzzy controllers and neural models for the development of fuzzy control systems, Fuzzy-neuro controller has been designed by integrating two neural network models with a basic fuzzy logic controller. Using the back propagation algorithm, the first neural network is trained as a plant emulator and the second neural network is used as a compensator for the basic fuzzy controller to improve its performance on-line. The function of the neural network plant emulator is to provide the correct error signal at the output of the neural fuzzy compensator without the need for any mathematical modeling of the plant. The difficulty of fine-tuning the scale factors and formulating the correct control rules in a basic fuzzy controller may be reduced using the proposed scheme. The scheme is applied to the control speed of a wound rotor induction motor process. The control system is designed to maintain efficiency of motor and compensate power factor of system. That is: the proposed controller gives the controlled system by keeping the speed constant and the good transient response without overshoot can be obtained.
This paper deals with a computer aided control of an adjustment process for the complete electronic devices by means of an application of artificial neural network and an implementation of neuro-controller for intelligent control. Multi-layer neural network model is employed as artificial neural network with the learning method of the error back propagation. Information initially available from real plant under control are the initial values of plant output, and the augmented plant input and its corresponding plant output at that time. For the intelligent control of adjustment process utilizing artificial neural network, the neural network emulator (NNE) and the neural network controller(NNC) are developed. The initial weights of each neural network are determined through off line learning for the given product and it is also employed to cope with environments of the another product by on line learning. Computer simulation, as well as the application to the real situation of proposed intelligent control system is investigated.
We propose a new control architecture which consists of a PI controller and a neural network(NN) controller connected together in parallel. This architecture is well adapted to a wide range of uncertainties and variations of systems. The NN controller is learned through weights of the emulator which identify the dynamic chracteristics of the systems. A performance evaluation level of two NN's decides automatically which controller of the two controllers will be used mainly. The PI controller operates mainly during learning phase of the NN controller whereas a good performance is obtained from the NN controller only, when the NN controller is learned sufficiently.
In this study, a fuzzy control algorithm was developed for the randomly irregular shape of cold-rolled strip. Currently developed fuzzy control algorithm consists of two parts: the first part calculates the changes of work and intermediate roll bender forces based on the symmetric part of the irregular strip shape, and the second part calculates the weighting factors based on the asymmetric part and modifies the pre-determined roll bender forces according to the weighting factors. As a result of this, bender froces applied at the both sides of the cold-rolled strip were different. In order to simulate the continuous shape control. fuzzy controller developed was linked with emulator which was developed based on neural network. The fuzzy controller and emulator developed simulated the cold rolling process until irregular shape converged to a tolerable range in producing uniform cross-sectional strip shape. The results obtained from the simulation were reasonable for various irregular strip shapes.
In this paper, an implementation of neuro-controller with an application of artificial neural network for an adjustment and tuning process for the completed electronics devices is presented. Multi-layer neural network model is employed with the learning method of error back-propagation. For the intelligent control of adjustment and tuning process, the neural network emulator (NNE) and the neural network controller(NNC) are developed. Computer simulation reveals that the intelligent controllers designed can function very effectively as tools for computer aided adjustment system. The applications of the controllers to the real systems are also demonstrated.
초고속 전동기 구동 시스템을 위하여 간접 신경회로망 제어기를 제안하였다. 고속의 가변 전동기구동에서의 속도응답은 긴 정착시간과 높은 오버슈트의 영향에 있게 되므로 고성능을 위하여 신경회로망 제어기와 신경회로망 에뮬레이터로 구성된 제어기를 사용하였으며, 신경회로망 에뮬레이터는 고속 전동기의 정수와 특성을 동정하는데 사용하였고, 제어기의 학습은 접속강도가 백프로퍼게이션에 의해 조절되도록 하였다. 그리고 시뮬레이션과 실험을 통하여 제안된 시스템의 특성과 장점을 확인하였다.
Recently, dynamic recurrent neural networks(DRNN) for identification of nonlinear dynamic systems have been researched extensively. In general, dynamic backpropagation was used to adjust the weights of neural networks. But, this method requires many complex calculations and has the possibility of falling into a local minimum. So, we propose a new approach to identify nonlinear dynamic systems using DRNN. In order to adjust the weights of neurons, we use evolution strategies, which is a method used to solve an optimal problem having many local minimums. DRNN trained by evolution strategies with mutation as the main operator can act as a plant emulator. And the fitness function of evolution strategies is based on the difference of the plant's outputs and DRNN's outputs. Thus, this new approach at identifying nonlinear dynamic system, when applied to the simulation of a two-link robot manipulator, demonstrates the performance and efficiency of this proposed approach.
A design method of model following control system using neural networks is proposed. An unknown nonlinear single-input single-output plant is identified using a multilayer neural networks. A linear controller is designed fer the linear approximation model obtained by linearinzing the identification model. The identification model is also used as a plant emulator to obtain the prediction error. Deficient servo performance due to controlling nonlinear plant with only linear controller is mended by adjusting the linear controller output using the prediction output and the parameters of the identification model. An optimal preview controller is adopted as the linear controller by reason of having good servo performance lowering the peak of control input. Validity of proposed method is illustrated through a numerical simulation.
본 논문은 입/출력 관계가 불명확한 가전제품 제어에 인공신경회로망을 응용하여 지능형 제어기를 구현하는 방법에 관한 것이다. 다층신경회로망을 사용하고 Error Back Propagation 학습방법에 의하여 학습되도록 한다. 제어대상물에서 알 수 있는 정보는 입력값과 이에 대응하는 출력값 뿐이며 입력과 출력에 대한 관계를 수학적으로 모델링하기 어려운 경우이다. 인공신경회로망을 이용한 제어를 위하여 Neural Network Emulator(NNE)와 Neural Network Controller(NNC)가 개발되며 각 신경회로망의 초기하중백터는 제어대상에 오프라인 학습으로 결정하고, 자동조절과정에서 온라인 학습하여 새로운 대상제품 상황에 적응하도록 설계되었다. 제안된 지능형 제어시스템은 PC를 이용하여 실시스템에 적용하여 검토되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.