• Title/Summary/Keyword: Neural Complexity

Search Result 281, Processing Time 0.036 seconds

Cooperative Coordination Method of Neural Network Controller Module for Autonomous Mobile Robot Navigation

  • Joo, Han-Seong;Young, Oh-Se
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.178.3-178
    • /
    • 2001
  • This paper is concerned with designing a neural network based navigator that is optimized in a user-defined sense for a mobile robot using ultrasonic sensors to travel to a goal position safely and efficiently without any prior map of the environment. The neural network has a dynamically reconfigurable structure that not only can optimize the weights but also the input sensory connectivity in order to meet any user-defined objective. Therefore, in this research, we can select an optimal subset of sensory inputs that results in the best performance related to both navigation and structural complexity. Further, this research uses the manually trained initial population and the modular neural network to alleviate ...

  • PDF

Two-Stage Forecasting Using Change-Point Detection and Artificial Neural Networks for Stock Price Index (주가지수예측에서의 변환시점을 반영한 이단계 신경망 예측모형)

  • Oh, Kyong-Joo;Kim, Kyoung-Jae;Han, In-Goo
    • Asia pacific journal of information systems
    • /
    • v.11 no.4
    • /
    • pp.99-111
    • /
    • 2001
  • The prediction of stock price index is a very difficult problem because of the complexity of stock market data. It has been studied by a number of researchers since they strongly affect other economic and financial parameters. The movement of stock price index has a series of change points due to the strategies of institutional investors. This study presents a two-stage forecasting model of stock price index using change-point detection and artificial neural networks. The basic concept of this proposed model is to obtain intervals divided by change points, to identify them as change-point groups, and to use them in stock price index forecasting. First, the proposed model tries to detect successive change points in stock price index. Then, the model forecasts the change-point group with the backpropagation neural network(BPN). Finally, the model forecasts the output with BPN. This study then examines the predictability of the integrated neural network model for stock price index forecasting using change-point detection.

  • PDF

Residual Learning Based CNN for Gesture Recognition in Robot Interaction

  • Han, Hua
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.385-398
    • /
    • 2021
  • The complexity of deep learning models affects the real-time performance of gesture recognition, thereby limiting the application of gesture recognition algorithms in actual scenarios. Hence, a residual learning neural network based on a deep convolutional neural network is proposed. First, small convolution kernels are used to extract the local details of gesture images. Subsequently, a shallow residual structure is built to share weights, thereby avoiding gradient disappearance or gradient explosion as the network layer deepens; consequently, the difficulty of model optimisation is simplified. Additional convolutional neural networks are used to accelerate the refinement of deep abstract features based on the spatial importance of the gesture feature distribution. Finally, a fully connected cascade softmax classifier is used to complete the gesture recognition. Compared with the dense connection multiplexing feature information network, the proposed algorithm is optimised in feature multiplexing to avoid performance fluctuations caused by feature redundancy. Experimental results from the ISOGD gesture dataset and Gesture dataset prove that the proposed algorithm affords a fast convergence speed and high accuracy.

A Transmit Power Control based on Fading Channel Prediction for High-speed Mobile Communication Systems (고속 이동 통신 시스템을 위한 페이딩 예측기반 송신 전력 제어)

  • Hwang, In-Kwan;Lee, Sang-Kook;Ryu, In-Bum
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1A
    • /
    • pp.27-33
    • /
    • 2009
  • This paper proposes transmit power control techniques with fading channel prediction scheme based on recurrent neural network for high-speed mobile communication systems. The operation result of recurrent neural network which is derived interpretively solves complexity problems of neural network circuit, and channel gain of multiple transmit antenna is derived with maximum ratio combining(MRC) by using the operation result, and this channel gain control transmit power of each antenna. simulation results show that proposed method has a outstanding performance compared to method that is not to be controlled power based on channel prediction. Most of legacy studies are for robust receive technique of fading signals or channel prediction of fading signals limited low-speed mobility, but in open loop Power control, proposed channel prediction method decrease system complexity with removal of fading effect in transmitter.

Optimization procedure for parameter design using neural network (파라미터 설계에서 신경망을 이용한 최적화 방안)

  • Na, Myung-Whan;Kwon, Yong-Man
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.829-835
    • /
    • 2009
  • Parameter design is an approach to reducing performance variation of quality characteristic value in products and processes. Taguchi has used the signal-to-noise ratio to achieve the appropriate set of operating conditions where variability around target is low in the Taguchi parameter design. However, there are difficulties in practical application, such as complexity and nonlinear relationships among quality characteristics and control factors (design factors), and interactions occurred among control factors. Neural networks have a learning capability and model free characteristics. There characteristics support neural networks as a competitive tool in processing multivariable input-output implementation. In this paper we propose a substantially simpler optimization procedure for parameter design using neural network. An example is illustrated to compare the difference between the Taguchi method and neural network method.

  • PDF

Design of Incremental FCM-based Recursive RBF Neural Networks Pattern Classifier for Big Data Processing (빅 데이터 처리를 위한 증분형 FCM 기반 순환 RBF Neural Networks 패턴 분류기 설계)

  • Lee, Seung-Cheol;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1070-1079
    • /
    • 2016
  • In this paper, the design of recursive radial basis function neural networks based on incremental fuzzy c-means is introduced for processing the big data. Radial basis function neural networks consist of condition, conclusion and inference phase. Gaussian function is generally used as the activation function of the condition phase, but in this study, incremental fuzzy clustering is considered for the activation function of radial basis function neural networks, which could effectively do big data processing. In the conclusion phase, the connection weights of networks are given as the linear function. And then the connection weights are calculated by recursive least square estimation. In the inference phase, a final output is obtained by fuzzy inference method. Machine Learning datasets are employed to demonstrate the superiority of the proposed classifier, and their results are described from the viewpoint of the algorithm complexity and performance index.

Restructuring a Feed-forward Neural Network Using Hidden Knowledge Analysis (학습된 지식의 분석을 통한 신경망 재구성 방법)

  • Kim, Hyeon-Cheol
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.5
    • /
    • pp.289-294
    • /
    • 2002
  • It is known that restructuring feed-forward neural network affects generalization capability and efficiency of the network. In this paper, we introduce a new approach to restructure a neural network using abstraction of the hidden knowledge that the network has teamed. This method involves extracting local rules from non-input nodes and aggregation of the rules into global rule base. The extracted local rules are used for pruning unnecessary connections of local nodes and the aggregation eliminates any possible redundancies arid inconsistencies among local rule-based structures. Final network is generated by the global rule-based structure. Complexity of the final network is much reduced, compared to a fully-connected neural network and generalization capability is improved. Empirical results are also shown.

Development of Monitoring Tool for Synaptic Weights on Artificial Neural Network (인공 신경망의 시냅스 가중치 관리용 도구 개발)

  • Shin, Hyun-Kyung
    • The KIPS Transactions:PartD
    • /
    • v.16D no.1
    • /
    • pp.139-144
    • /
    • 2009
  • Neural network is a very exciting and generic framework to develop almost all ranges of machine learning technologies and its potential is far beyond its current capabilities. Among other characteristics, neural network acts as associative memory obtained from the values structurally stored in synaptic inherent structure. Due to innate complexity of neural networks system, in its practical implementation and maintenance, multifaceted problems are known to be unavoidable. In this paper, we present design and implementation details of GUI software which can be valuable tool to maintain and develop neural networks. It has capability of displaying every state of synaptic weights with network nodal relation in each learning step.

Host Anomaly Detection of Neural Networks and Neural-fuzzy Techniques with Soundex Algorithm (사운덱스 알고리즘을 적용한 신경망라 뉴로-처지 기법의 호스트 이상 탐지)

  • Cha, Byung-Rae;Kim, Hyung-Jong;Park, Bong-Gu;Cho, Hyug-Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.2
    • /
    • pp.13-22
    • /
    • 2005
  • To improve the anomaly IDS using system calls, this study focuses on Neural Networks Learning using the Soundex algorithm which is designed to change feature selection and variable length data into a fixed length learning pattern. That is, by changing variable length sequential system call data into a fixed length behavior pattern using the Soundex algorithm, this study conducted neural networks learning by using a backpropagation algorithm with fuzzy membership function. The back-propagation neural networks and Neuro-Fuzzy technique are applied for anomaly intrusion detection of system calls using Sendmail Data of UNM to demonstrate its aspect of he complexity of time, space and MDL performance.

The Design of Pattern Classification based on Fuzzy Combined Polynomial Neural Network (퍼지 결합 다항식 뉴럴 네트워크 기반 패턴 분류기 설계)

  • Rho, Seok-Beom;Jang, Kyung-Won;Ahn, Tae-Chon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.534-540
    • /
    • 2014
  • In this paper, we propose a fuzzy combined Polynomial Neural Network(PNN) for pattern classification. The fuzzy combined PNN comes from the generic TSK fuzzy model with several linear polynomial as the consequent part and is the expanded version of the fuzzy model. The proposed pattern classifier has the polynomial neural networks as the consequent part, instead of the general linear polynomial. PNNs are implemented by stacking the simple polynomials dynamically. To implement one layer of PNNs, the various types of simple polynomials are used so that PNNs have flexibility and versatility. Although the structural complexity of the implemented PNNs is high, the PNNs become a high order-multi input polynomial finally. To estimate the coefficients of a polynomial neuron, The weighted linear discriminant analysis. The output of fuzzy rule system with PNNs as the consequent part is the linear combination of the output of several PNNs. To evaluate the classification ability of the proposed pattern classifier, we make some experiments with several machine learning data sets.