• 제목/요약/키워드: Neural Circuit

검색결과 240건 처리시간 0.023초

Direct Action of Genistein on the Hypothalamic Neuronal Circuits in Female Rats

  • Lee, Woo-Cheol;Lee, Sung-Ho
    • 한국발생생물학회지:발생과생식
    • /
    • 제14권1호
    • /
    • pp.35-41
    • /
    • 2010
  • Mammalian reproduction is regulated by a feedback circuit of the key reproductive hormones such as GnRH, gonadotropin and sex steroids on the hypothalamic-pituitary-gonadal axis. In particular, the onset of female puberty is triggered by gain of a pulsatile pattern and increment of GnRH secretion from hypothalamus. Previous studies including our own clearly demonstrated that genistein (GS), a phytoestrogenic isoflavone, altered the timing of puberty onset in female rats. However, the brain-specific actions of GS in female rats has not been explored yet. The present study was performed to examine the changes in the activities of GnRH neurons and their neural circuits by GS in female rats. Concerning the drug delivery route, intracerebroventricular (ICV) injection technique was employed to eliminate the unwanted actions on the extrabrain tissues which can be occurred if the testing drug is systemically administered. Adult female rats (PND 100, 210-230 g BW) were anaesthetized, treated with single dose of GS ($3.4{\mu}g$/animal), and sacrificed at 3 hrs post-injection. To determine the transcriptional changes of reproductive hormone-related genes in hypothalamus, total RNAs were extracted and applied to the semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). ICV infusion of GS significantly raised the transcriptional activities of enhanced at puberty1 (EAP-1, p<0.05), glutamic acid decarboxylase (GAD67, p<0.01) which are known to modulate GnRH secretion in the hypothalamus. However, GS infusion could not change the mRNA level of nitric oxide synthase 2 (NOS-2). GS administration significantly increased the mRNA levels of KiSS-1 (p<0.001), GPR54 (p<0.001), and GnRH (p<0.01) in the hypothalami, but decreased the mRNA levels of LH-$\beta$ (p<0.01) and FSH-$\beta$ (p<0.05) in the pituitaries. Taken together, the present study indicated that the acute exposure to GS could directly activate the hypothalamic GnRH modulating system, suggesting the GS's disrupting effects such as the early onset of puberty in immature female rats might be derived from premature activation of key reproduction related genes in hypothalamus-pituitary neuroendocrine circuit.

비접지형 멤리스터 에뮬레이터 회로 (Floating Memristor Emulator Circuit)

  • 김용진;양창주;김형석
    • 전자공학회논문지
    • /
    • 제52권8호
    • /
    • pp.49-58
    • /
    • 2015
  • 본 연구에서는 $TiO_2$멤리스터와 동일한 동작특성을 갖는 멤리스터 에뮬레이터 회로를 비접지형 회로로 개발하였다. 대부분의 기존 멤리스터 에뮬레이터는 다른 멤리스터나 소자들과의 연결성을 고려하지 않은 접지 식으로 개발된 것들이다. 본 연구에서 개발한 멤리스터 에뮬레이터는 비접지식으로서, 출력 단을 접지할 필요가 없기 때문에 다른 소자들과 연결이 가능하여, 다양한 회로들과의 연결하여 동작을 확인하는데 사용할 수 있다. 개발한 멤리스터 에뮬레이터의 기능을 확인하기 위해서 저항과 직렬로 연결한 회로와 4개의 멤리스터 에뮬레이터를 직렬 및 병렬로 연결한 휘트스톤 브리지 회로를 구성하였다. 또한 이브리지 회로가 신경망 시냅스의 가중치 연산이 가능함을 보였다.

Investigating the Effects of Hearing Loss and Hearing Aid Digital Delay on Sound-Induced Flash Illusion

  • Moradi, Vahid;Kheirkhah, Kiana;Farahani, Saeid;Kavianpour, Iman
    • 대한청각학회지
    • /
    • 제24권4호
    • /
    • pp.174-179
    • /
    • 2020
  • Background and Objectives: The integration of auditory-visual speech information improves speech perception; however, if the auditory system input is disrupted due to hearing loss, auditory and visual inputs cannot be fully integrated. Additionally, temporal coincidence of auditory and visual input is a significantly important factor in integrating the input of these two senses. Time delayed acoustic pathway caused by the signal passing through digital signal processing. Therefore, this study aimed to investigate the effects of hearing loss and hearing aid digital delay circuit on sound-induced flash illusion. Subjects and Methods: A total of 13 adults with normal hearing, 13 with mild to moderate hearing loss, and 13 with moderate to severe hearing loss were enrolled in this study. Subsequently, the sound-induced flash illusion test was conducted, and the results were analyzed. Results: The results showed that hearing aid digital delay and hearing loss had no detrimental effect on sound-induced flash illusion. Conclusions: Transmission velocity and neural transduction rate of the auditory inputs decreased in patients with hearing loss. Hence, the integrating auditory and visual sensory cannot be combined completely. Although the transmission rate of the auditory sense input was approximately normal when the hearing aid was prescribed. Thus, it can be concluded that the processing delay in the hearing aid circuit is insufficient to disrupt the integration of auditory and visual information.

자동차 ECU제어를 위한 음성인식 패턴매칭레벨에 관한 연구 (A Study on Voice Recognition Pattern matching level for Vehicle ECU control)

  • 안종영;김영섭;김수훈;허강인
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권1호
    • /
    • pp.75-80
    • /
    • 2010
  • 자동차 환경에서의 음성인식은 잡음처리가 매우 중요한 요소이다. 하드웨어 및 소프트웨어로 적인 접근방법으로 많은 연구가 되어 지고 있다. 하드웨어적인 방법으로는 Low-pass filter를 기본으로한 잡음처리 필터가 많이 연구되어 가시적인 성과를 보이고 있고, 소프트웨어적으로는 Noise canceler, 신경망 등 패턴인식 알고리듬의 연구가 이루어지고 있다. 본 논문에서는 시계열 패턴인식에 적용 가능한 알고리듬인 DTW(Dynamic Time Warping)를 자동차 잡음환경에 적용하여 그 음성인식을 위한 파라미터 패턴에 대한 매칭 레벨을 분류하여 잡음환경 적합한 패턴 매칭 레벨을 분석 하였다.

본태성 진전에서 시각의 영향 (Visual Cues in Essential Tremor)

  • 서만욱
    • Annals of Clinical Neurophysiology
    • /
    • 제2권2호
    • /
    • pp.114-118
    • /
    • 2000
  • Purpose : The pathophysiology of essential tremor(ET) remains unknown. PET studies of ET showed some conflicting data. One study reported significant glucose hypermetabolism of the medulla and thalami, but other studies reported abnormal bilateral overactivity of cerebellar and red nuclear connections. The previous experimental studies suggested that each PET finding reflects a part of neural circuit which is responsible for ET. So it can be imagined that olivocerebellar oscillation may be transmitted by the way of cerebellar projections to the thalamus in ET. It has been reported that the cerebellar dentate nucleus neurons are involved in the generation and/or guidance of movement based on visual cues. The purpose of this study is to clarify the role of dentato-thalamic tract in ET. Methods : Tremor amplitudes were recorded as each patient perform two kinds of task, one involving sensory-guided movement and the other involving memory-guided movement. Each patient was asked to move his/her index finger following a smoothly moving target. He/She also was asked to perform the same movements with his/her eyes closed ET. Results : The results showed that average amplitudes of tremor were significantly higer during visually guided task than during memory guided task in ET patients. Conclusions : Our results led us to conclude that dentato-thalamic tract might be related to the control of tremor in ET.

  • PDF

소형 BLDC 전동기 센서리스 드라이브의 단상 역기전력과 중성점을 이용한 제어기법 연구 (A Study on a Control Method for Small BLDC Motor Sensorless Drive with the Single Phase BEMF and the Neutral Point)

  • 조준우;황돈하;황영기;정태욱
    • 조명전기설비학회논문지
    • /
    • 제28권9호
    • /
    • pp.1-7
    • /
    • 2014
  • Brushless Direct Current(BLDC) Motor is essential to measure a rotor position because of that this motor type needs to synchronize the rotor's position and changeover phase current instead of a brush and commutator used on the existing dc motor. Recently, many researches have studied on sensorless control drive for BLDC motor. The conventional control methods are a compensation value dq, Kalman filter, Fuzzy logic, Neurons neural network, and the like. These methods has difficulties of detecting BEMF accurately at low speed because of low BEMF voltage and switching noise. And also, the operation is long and complex. So, it is required a high-performance microprocessor. Therefore, it is not suitable for a small BLDC motor sensorless drive. This paper presents control methods suitable for economic small BLDC motor sensorless drive which are an improved design of the BEMF detection circuit, simplifying a complex algorithm and computation time reduction. The improved motor sensorless drive is verified stability and validity through being designed, manufactured and analyzed.

Alterations in Striatal Circuits Underlying Addiction-Like Behaviors

  • Kim, Hyun Jin;Lee, Joo Han;Yun, Kyunghwa;Kim, Joung-Hun
    • Molecules and Cells
    • /
    • 제40권6호
    • /
    • pp.379-385
    • /
    • 2017
  • Drug addiction is a severe psychiatric disorder characterized by the compulsive pursuit of drugs of abuse despite potential adverse consequences. Although several decades of studies have revealed that psychostimulant use can result in extensive alterations of neural circuits and physiology, no effective therapeutic strategies or medicines for drug addiction currently exist. Changes in neuronal connectivity and regulation occurring after repeated drug exposure contribute to addiction-like behaviors in animal models. Among the involved brain areas, including those of the reward system, the striatum is the major area of convergence for glutamate, GABA, and dopamine transmission, and this brain region potentially determines stereotyped behaviors. Although the physiological consequences of striatal neurons after drug exposure have been relatively well documented, it remains to be clarified how changes in striatal connectivity underlie and modulate the expression of addiction-like behaviors. Understanding how striatal circuits contribute to addiction-like behaviors may lead to the development of strategies that successfully attenuate drug-induced behavioral changes. In this review, we summarize the results of recent studies that have examined striatal circuitry and pathway-specific alterations leading to addiction-like behaviors to provide an updated framework for future investigations.

다채널 미세전극칩 임피던스 분석을 위한 자동 스위칭 시스템: 한계점 및 개선 방안 (Automatic Switching System for The Impedance Analysis of Multichannel icroelectrode Arrays: Limits and Improvement Scheme)

  • 이석영;남윤기
    • 대한의용생체공학회:의공학회지
    • /
    • 제32권3호
    • /
    • pp.207-217
    • /
    • 2011
  • Electrode impedances are measured to quantitatively characterize the electrode-electrolyte or cell-electrode interfaces. In the case of high-density microelectrode arrays(MEAs) that have been developed for brainmachine interface applications, the characterization process becomes a repeating and time-consuming task; a system that can perform the measurement and analysis in an automated fashion with accuracy and speed is required. However, due to the large number of channels, parasitic capacitance and off-capacitance components of the switching system become the major factors that decreased the accuracy for the measurement of high impedance microelectrodes. Here we investigated the implementation of automatic impedance measurement system with analyzing the causes of possible measurement-related problems in multichannel switching configuration. Based on our multi-channel measurement circuit model, we suggest solutions to the problems and introduce a novel impedance measurement scheme using electro-mechanical relays. The implemented measurement system could measure |Z| < 700 $k{\Omega}$ of impedance in - 10% errors, which can be widely applicable to high density neural recording MEAs.

Dopamine-dependent synaptic plasticity in an amygdala inhibitory circuit controls fear memory expression

  • Lee, Joo Han;Kim, Joung-Hun
    • BMB Reports
    • /
    • 제49권1호
    • /
    • pp.1-2
    • /
    • 2016
  • Of the numerous events that occur in daily life, we readily remember salient information, but do not retain most less-salient events for a prolonged period. Although some of the episodes contain putatively emotional aspects, the information with lower saliency is rarely stored in neural circuits via an unknown mechanism. We provided substantial evidence indicating that synaptic plasticity in the dorsal ITC of amygdala allows for selective storage of salient emotional experiences, while it deters less-salient experience from entering long-term memory. After activation of D4R or weak fear conditioning, STDP stimulation induces LTD in the LA-ITC synapses. This form of LTD is dependent upon presynaptic D4R, and is likely to result from enhancement of GABA release. Both optogenetic abrogation of LTD and ablation of D4R at the dorsal ITC in vivo lead to heightened and over-generalized fear responses. Finally, we demonstrated that LTD was impaired at the dorsal ITC of PTSD model mice, which suggests that maladaptation of GABAergic signaling and the resultant LTD impairment contribute to the endophenotypes of PTSD. [BMB Reports 2016; 49(1): 1-2]

Functional Dissection of Glutamatergic and GABAergic Neurons in the Bed Nucleus of the Stria Terminalis

  • Kim, Seong-Rae;Kim, Sung-Yon
    • Molecules and Cells
    • /
    • 제44권2호
    • /
    • pp.63-67
    • /
    • 2021
  • The bed nucleus of the stria terminalis (BNST)-a key part of the extended amygdala-has been implicated in the regulation of diverse behavioral states, ranging from anxiety and reward processing to feeding behavior. Among the host of distinct types of neurons within the BNST, recent investigations employing cell type- and projection-specific circuit dissection techniques (such as optogenetics, chemogenetics, deep-brain calcium imaging, and the genetic and viral methods for targeting specific types of cells) have highlighted the key roles of glutamatergic and GABAergic neurons and their axonal projections. As anticipated from their primary roles in excitatory and inhibitory neurotransmission, these studies established that the glutamatergic and GABAergic subpopulations of the BNST oppositely regulate diverse behavioral states. At the same time, these studies have also revealed unexpected functional specificity and heterogeneity within each subpopulation. In this Minireview, we introduce the body of studies that investigated the function of glutamatergic and GABAergic BNST neurons and their circuits. We also discuss unresolved questions and future directions for a more complete understanding of the cellular diversity and functional heterogeneity within the BNST.