• Title/Summary/Keyword: Network traffic monitoring

Search Result 264, Processing Time 0.02 seconds

Collaboration and Node Migration Method of Multi-Agent Using Metadata of Naming-Agent (네이밍 에이전트의 메타데이터를 이용한 멀티 에이전트의 협력 및 노드 이주 기법)

  • Kim, Kwang-Jong;Lee, Yon-Sik
    • The KIPS Transactions:PartD
    • /
    • v.11D no.1
    • /
    • pp.105-114
    • /
    • 2004
  • In this paper, we propose a collaboration method of diverse agents each others in multi-agent model and describe a node migration algorithm of Mobile-Agent (MA) using by the metadata of Naming-Agent (NA). Collaboration work of multi-agent assures stability of agent system and provides reliability of information retrieval on the distributed environment. NA, an important part of multi-agent, identifies each agents and series the unique name of each agents, and each agent references the specified object using by its name. Also, NA integrates and manages naming service by agents classification such as Client-Push-Agent (CPA), Server-Push-Agent (SPA), and System-Monitoring-Agent (SMA) based on its characteristic. And, NA provides the location list of mobile nodes to specified MA. Therefore, when MA does move through the nodes, it is needed to improve the efficiency of node migration by specified priority according to hit_count, hit_ratio, node processing and network traffic time. Therefore, in this paper, for the integrated naming service, we design Naming Agent and show the structure of metadata which constructed with fields such as hit_count, hit_ratio, total_count of documents, and so on. And, this paper presents the flow of creation and updating of metadata and the method of node migration with hit_count through the collaboration of multi-agent.

An Efficient Location Encoding Method Based on Hierarchical Administrative District (계층적 행정 구역에 기반한 효율적인 위치 정보 표현 방식)

  • Lee Sang-Yoon;Park Sang-Hyun;Kim Woo-Cheol;Lee Dong-Won
    • Journal of KIISE:Databases
    • /
    • v.33 no.3
    • /
    • pp.299-309
    • /
    • 2006
  • Due to the rapid development in mobile communication technologies, the usage of mobile devices such as cell phone or PDA becomes increasingly popular. As different devices require different applications, various new services are being developed to satisfy the needs. One of the popular services under heavy demand is the Location-based Service (LBS) that exploits the spatial information of moving objects per temporal changes. In order to support LBS efficiently, it is necessary to be able to index and query well a large amount of spatio-temporal information of moving objects. Therefore, in this paper, we investigate how such location information of moving objects can be efficiently stored and indexed. In particular, we propose a novel location encoding method based on hierarchical administrative district information. Our proposal is different from conventional approaches where moving objects are often expressed as geometric points in two dimensional space, (x,y). Instead, in ours, moving objects are encoded as one dimensional points by both administrative district as well as road information. Our method is especially useful for monitoring traffic situation or tracing location of moving objects through approximate spatial queries.

Optimizing Multi-way Join Query Over Data Streams (데이타 스트림에서의 다중 조인 질의 최적화 방법)

  • Park, Hong-Kyu;Lee, Won-Suk
    • Journal of KIISE:Databases
    • /
    • v.35 no.6
    • /
    • pp.459-468
    • /
    • 2008
  • A data stream which is a massive unbounded sequence of data elements continuously generated at a rapid rate. Many recent research activities for emerging applications often need to deal with the data stream. Such applications can be web click monitoring, sensor data processing, network traffic analysis. telephone records and multi-media data. For this. data processing over a data stream are not performed on the stored data but performed the newly updated data with pre-registered queries, and then return a result immediately or periodically. Recently, many studies are focused on dealing with a data stream more than a stored data set. Especially. there are many researches to optimize continuous queries in order to perform them efficiently. This paper proposes a query optimization algorithm to manage continuous query which has multiple join operators(Multi-way join) over data streams. It is called by an Extended Greedy query optimization based on a greedy algorithm. It defines a join cost by a required operation to compute a join and an operation to process a result and then stores all information for computing join cost and join cost in the statistics catalog. To overcome a weak point of greedy algorithm which has poor performance, the algorithm selects the set of operators with a small lay, instead of operator with the smallest cost. The set is influenced the accuracy and execution time of the algorithm and can be controlled adaptively by two user-defined values. Experiment results illustrate the performance of the EGA algorithm in various stream environments.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.