• Title/Summary/Keyword: Network models

Search Result 3,898, Processing Time 0.035 seconds

An Analysis of Elementary Students' Attention Characteristics through Attention Test and the Eye Tracking on Real Science Classes (실제 과학수업에서 시선추적과 주의력 검사를 통한 초등학생들의 주의 특성 분석)

  • Shin, Won-Sub;Shin, Dong-Hoon
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.4
    • /
    • pp.705-715
    • /
    • 2016
  • The purpose of this research is to analyze elementary students' attention characteristics through attention test and eye tracking on real science classes. The SMI's ETG(eye tracker glasses) mobile eye tracker was used to analyze the attention process of elementary students'. The sampling rate of the ETG is 30Hz. The participants of attention test were elementary 155 6th-grade elementary students and the participants for the eye-tracker were six 6th-grade male students. The eye movements were analyzed using the 'BeGaze Mobile Video Analysis Package' program. The results of this research are as follows. First, the attention test results of elementary students showed high correlation between selective attention and sustained attention (.85) and low correlation between selective attention and self-regulation (.32). Second, the attention types of elementary students were divided into four; attention, inattention, easygoing and hasty. Third, elementary students' attention were divided into top-down, bottom-up, default mode network through analysis of elementary students′ eye-movements during real science classes. Also their attention shift occurred frequently due to various reasons in real class situation. There were three reasons that made elementary students fail to handle knowledge-dependent top-down attention; 1) the cognitive failure of target caused by failing to focus attention, 2) the absence of prior knowledge on target object, 3) the analogical failure of prior knowledge. Finally, elementary students' attention process were schematized based on the analysis of students' eye movements and attention test. This research is expected to be utilized as basic data for developing effective teaching strategies, teaching-learning models and instructional materials.

Techniques for Acquisition of Moving Object Location in LBS (위치기반 서비스(LBS)를 위한 이동체 위치획득 기법)

  • Min, Gyeong-Uk;Jo, Dae-Su
    • The KIPS Transactions:PartD
    • /
    • v.10D no.6
    • /
    • pp.885-896
    • /
    • 2003
  • The typws of service using location Information are being various and extending their domain as wireless internet tochnology is developing and its application par is widespread, so it is prospected that LBS(Location-Based Services) will be killer application in wireless internet services. This location information is basic and high value-added information, and this information services make prior GIS(Geographic Information System) to be useful to anybody. The acquisition of this location information from moving object is very important part in LBS. Also the interfacing of acquisition of moving object between MODB and telecommunication network is being very important function in LBS. After this, when LBS are familiar to everybody, we can predict that LBS system load is so heavy for the acquisition of so many subscribers and vehicles. That is to say, LBS platform performance is fallen off because of overhead increment of acquiring moving object between MODB and wireless telecommunication network. So, to make stable of LBS platform, in this MODB system, acquisition of moving object location par as reducing the number of acquisition of unneccessary moving object location. We study problems in acquiring a huge number of moving objects location and design some acquisition model using past moving patternof each object to reduce telecommunication overhead. And after implementation these models, we estimate performance of each model.

Product Recommender Systems using Multi-Model Ensemble Techniques (다중모형조합기법을 이용한 상품추천시스템)

  • Lee, Yeonjeong;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.39-54
    • /
    • 2013
  • Recent explosive increase of electronic commerce provides many advantageous purchase opportunities to customers. In this situation, customers who do not have enough knowledge about their purchases, may accept product recommendations. Product recommender systems automatically reflect user's preference and provide recommendation list to the users. Thus, product recommender system in online shopping store has been known as one of the most popular tools for one-to-one marketing. However, recommender systems which do not properly reflect user's preference cause user's disappointment and waste of time. In this study, we propose a novel recommender system which uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user's preference. The research data is collected from the real-world online shopping store, which deals products from famous art galleries and museums in Korea. The data initially contain 5759 transaction data, but finally remain 3167 transaction data after deletion of null data. In this study, we transform the categorical variables into dummy variables and exclude outlier data. The proposed model consists of two steps. The first step predicts customers who have high likelihood to purchase products in the online shopping store. In this step, we first use logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. We perform above data mining techniques using SAS E-Miner software. In this study, we partition datasets into two sets as modeling and validation sets for the logistic regression and decision trees. We also partition datasets into three sets as training, test, and validation sets for the artificial neural network model. The validation dataset is equal for the all experiments. Then we composite the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. Bagging is the abbreviation of "Bootstrap Aggregation" and it composite outputs from several machine learning techniques for raising the performance and stability of prediction or classification. This technique is special form of the averaging method. Bumping is the abbreviation of "Bootstrap Umbrella of Model Parameter," and it only considers the model which has the lowest error value. The results show that bumping outperforms bagging and the other predictors except for "Poster" product group. For the "Poster" product group, artificial neural network model performs better than the other models. In the second step, we use the market basket analysis to extract association rules for co-purchased products. We can extract thirty one association rules according to values of Lift, Support, and Confidence measure. We set the minimum transaction frequency to support associations as 5%, maximum number of items in an association as 4, and minimum confidence for rule generation as 10%. This study also excludes the extracted association rules below 1 of lift value. We finally get fifteen association rules by excluding duplicate rules. Among the fifteen association rules, eleven rules contain association between products in "Office Supplies" product group, one rules include the association between "Office Supplies" and "Fashion" product groups, and other three rules contain association between "Office Supplies" and "Home Decoration" product groups. Finally, the proposed product recommender systems provides list of recommendations to the proper customers. We test the usability of the proposed system by using prototype and real-world transaction and profile data. For this end, we construct the prototype system by using the ASP, Java Script and Microsoft Access. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The participants for the survey are 173 persons who use MSN Messenger, Daum Caf$\acute{e}$, and P2P services. We evaluate the user satisfaction using five-scale Likert measure. This study also performs "Paired Sample T-test" for the results of the survey. The results show that the proposed model outperforms the random selection model with 1% statistical significance level. It means that the users satisfied the recommended product list significantly. The results also show that the proposed system may be useful in real-world online shopping store.

Transfer and Validation of NIRS Calibration Models for Evaluating Forage Quality in Italian Ryegrass Silages (이탈리안 라이그라스 사일리지의 품질평가를 위한 근적외선분광 (NIRS) 검량식의 이설 및 검증)

  • Cho, Kyu Chae;Park, Hyung Soo;Lee, Sang Hoon;Choi, Jin Hyeok;Seo, Sung;Choi, Gi Jun
    • Journal of Animal Environmental Science
    • /
    • v.18 no.sup
    • /
    • pp.81-90
    • /
    • 2012
  • This study was evaluated high end research grade Near infrared spectrophotometer (NIRS) to low end popular field grade multiple Near infrared spectrophotometer (NIRS) for rapid analysis at forage quality at sight with 241 samples of Italian ryegrass silage during 3 years collected whole country for evaluate accuracy and precision between instruments. Firstly collected and build database high end research grade NIRS using with Unity Scientific Model 2500X (650 nm~2,500 nm) then trim and fit to low end popular field grade NIRS with Unity Scientific Model 1400 (1,400 nm~2,400 nm) then build and create calibration, transfer calibration with special transfer algorithm. The result between instruments was 0.000%~0.343% differences, rapidly analysis for chemical constituents, NDF, ADF, and crude protein, crude ash and fermentation parameter such as moisture, pH and lactic acid, finally forage quality parameter, TDN, DMI, RFV within 5 minutes at sight and the result equivalent with laboratory data. Nevertheless during 3 years collected samples for build calibration was organic samples that make differentiate by local or yearly bases etc. This strongly suggest population evaluation technique needed and constantly update calibration and maintenance calibration to proper handling database accumulation and spread out by knowledgable control laboratory analysis and reflect calibration update such as powerful control center needed for long lasting usage of forage analysis with NIRS at sight. Especially the agriculture products such as forage will continuously changes that made easily find out the changes and update routinely, if not near future NIRS was worthless due to those changes. Many research related NIRS was shortly study not long term study that made not well using NIRS, so the system needed check simple and instantly using with local language supported signal methods Global Distance (GD) and Neighbour Distance (ND) algorithm. Finally the multiple popular field grades instruments should be the same results not only between research grade instruments but also between multiple popular field grade instruments that needed easily transfer calibration and maintenance between instruments via internet networking techniques.

A Study on the Effect of the Document Summarization Technique on the Fake News Detection Model (문서 요약 기법이 가짜 뉴스 탐지 모형에 미치는 영향에 관한 연구)

  • Shim, Jae-Seung;Won, Ha-Ram;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.201-220
    • /
    • 2019
  • Fake news has emerged as a significant issue over the last few years, igniting discussions and research on how to solve this problem. In particular, studies on automated fact-checking and fake news detection using artificial intelligence and text analysis techniques have drawn attention. Fake news detection research entails a form of document classification; thus, document classification techniques have been widely used in this type of research. However, document summarization techniques have been inconspicuous in this field. At the same time, automatic news summarization services have become popular, and a recent study found that the use of news summarized through abstractive summarization has strengthened the predictive performance of fake news detection models. Therefore, the need to study the integration of document summarization technology in the domestic news data environment has become evident. In order to examine the effect of extractive summarization on the fake news detection model, we first summarized news articles through extractive summarization. Second, we created a summarized news-based detection model. Finally, we compared our model with the full-text-based detection model. The study found that BPN(Back Propagation Neural Network) and SVM(Support Vector Machine) did not exhibit a large difference in performance; however, for DT(Decision Tree), the full-text-based model demonstrated a somewhat better performance. In the case of LR(Logistic Regression), our model exhibited the superior performance. Nonetheless, the results did not show a statistically significant difference between our model and the full-text-based model. Therefore, when the summary is applied, at least the core information of the fake news is preserved, and the LR-based model can confirm the possibility of performance improvement. This study features an experimental application of extractive summarization in fake news detection research by employing various machine-learning algorithms. The study's limitations are, essentially, the relatively small amount of data and the lack of comparison between various summarization technologies. Therefore, an in-depth analysis that applies various analytical techniques to a larger data volume would be helpful in the future.

Conditional Generative Adversarial Network based Collaborative Filtering Recommendation System (Conditional Generative Adversarial Network(CGAN) 기반 협업 필터링 추천 시스템)

  • Kang, Soyi;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.157-173
    • /
    • 2021
  • With the development of information technology, the amount of available information increases daily. However, having access to so much information makes it difficult for users to easily find the information they seek. Users want a visualized system that reduces information retrieval and learning time, saving them from personally reading and judging all available information. As a result, recommendation systems are an increasingly important technologies that are essential to the business. Collaborative filtering is used in various fields with excellent performance because recommendations are made based on similar user interests and preferences. However, limitations do exist. Sparsity occurs when user-item preference information is insufficient, and is the main limitation of collaborative filtering. The evaluation value of the user item matrix may be distorted by the data depending on the popularity of the product, or there may be new users who have not yet evaluated the value. The lack of historical data to identify consumer preferences is referred to as data sparsity, and various methods have been studied to address these problems. However, most attempts to solve the sparsity problem are not optimal because they can only be applied when additional data such as users' personal information, social networks, or characteristics of items are included. Another problem is that real-world score data are mostly biased to high scores, resulting in severe imbalances. One cause of this imbalance distribution is the purchasing bias, in which only users with high product ratings purchase products, so those with low ratings are less likely to purchase products and thus do not leave negative product reviews. Due to these characteristics, unlike most users' actual preferences, reviews by users who purchase products are more likely to be positive. Therefore, the actual rating data is over-learned in many classes with high incidence due to its biased characteristics, distorting the market. Applying collaborative filtering to these imbalanced data leads to poor recommendation performance due to excessive learning of biased classes. Traditional oversampling techniques to address this problem are likely to cause overfitting because they repeat the same data, which acts as noise in learning, reducing recommendation performance. In addition, pre-processing methods for most existing data imbalance problems are designed and used for binary classes. Binary class imbalance techniques are difficult to apply to multi-class problems because they cannot model multi-class problems, such as objects at cross-class boundaries or objects overlapping multiple classes. To solve this problem, research has been conducted to convert and apply multi-class problems to binary class problems. However, simplification of multi-class problems can cause potential classification errors when combined with the results of classifiers learned from other sub-problems, resulting in loss of important information about relationships beyond the selected items. Therefore, it is necessary to develop more effective methods to address multi-class imbalance problems. We propose a collaborative filtering model using CGAN to generate realistic virtual data to populate the empty user-item matrix. Conditional vector y identify distributions for minority classes and generate data reflecting their characteristics. Collaborative filtering then maximizes the performance of the recommendation system via hyperparameter tuning. This process should improve the accuracy of the model by addressing the sparsity problem of collaborative filtering implementations while mitigating data imbalances arising from real data. Our model has superior recommendation performance over existing oversampling techniques and existing real-world data with data sparsity. SMOTE, Borderline SMOTE, SVM-SMOTE, ADASYN, and GAN were used as comparative models and we demonstrate the highest prediction accuracy on the RMSE and MAE evaluation scales. Through this study, oversampling based on deep learning will be able to further refine the performance of recommendation systems using actual data and be used to build business recommendation systems.

Performance of Investment Strategy using Investor-specific Transaction Information and Machine Learning (투자자별 거래정보와 머신러닝을 활용한 투자전략의 성과)

  • Kim, Kyung Mock;Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.65-82
    • /
    • 2021
  • Stock market investors are generally split into foreign investors, institutional investors, and individual investors. Compared to individual investor groups, professional investor groups such as foreign investors have an advantage in information and financial power and, as a result, foreign investors are known to show good investment performance among market participants. The purpose of this study is to propose an investment strategy that combines investor-specific transaction information and machine learning, and to analyze the portfolio investment performance of the proposed model using actual stock price and investor-specific transaction data. The Korea Exchange offers daily information on the volume of purchase and sale of each investor to securities firms. We developed a data collection program in C# programming language using an API provided by Daishin Securities Cybosplus, and collected 151 out of 200 KOSPI stocks with daily opening price, closing price and investor-specific net purchase data from January 2, 2007 to July 31, 2017. The self-organizing map model is an artificial neural network that performs clustering by unsupervised learning and has been introduced by Teuvo Kohonen since 1984. We implement competition among intra-surface artificial neurons, and all connections are non-recursive artificial neural networks that go from bottom to top. It can also be expanded to multiple layers, although many fault layers are commonly used. Linear functions are used by active functions of artificial nerve cells, and learning rules use Instar rules as well as general competitive learning. The core of the backpropagation model is the model that performs classification by supervised learning as an artificial neural network. We grouped and transformed investor-specific transaction volume data to learn backpropagation models through the self-organizing map model of artificial neural networks. As a result of the estimation of verification data through training, the portfolios were rebalanced monthly. For performance analysis, a passive portfolio was designated and the KOSPI 200 and KOSPI index returns for proxies on market returns were also obtained. Performance analysis was conducted using the equally-weighted portfolio return, compound interest rate, annual return, Maximum Draw Down, standard deviation, and Sharpe Ratio. Buy and hold returns of the top 10 market capitalization stocks are designated as a benchmark. Buy and hold strategy is the best strategy under the efficient market hypothesis. The prediction rate of learning data using backpropagation model was significantly high at 96.61%, while the prediction rate of verification data was also relatively high in the results of the 57.1% verification data. The performance evaluation of self-organizing map grouping can be determined as a result of a backpropagation model. This is because if the grouping results of the self-organizing map model had been poor, the learning results of the backpropagation model would have been poor. In this way, the performance assessment of machine learning is judged to be better learned than previous studies. Our portfolio doubled the return on the benchmark and performed better than the market returns on the KOSPI and KOSPI 200 indexes. In contrast to the benchmark, the MDD and standard deviation for portfolio risk indicators also showed better results. The Sharpe Ratio performed higher than benchmarks and stock market indexes. Through this, we presented the direction of portfolio composition program using machine learning and investor-specific transaction information and showed that it can be used to develop programs for real stock investment. The return is the result of monthly portfolio composition and asset rebalancing to the same proportion. Better outcomes are predicted when forming a monthly portfolio if the system is enforced by rebalancing the suggested stocks continuously without selling and re-buying it. Therefore, real transactions appear to be relevant.

An Exploratory Study on the Business Failure Recovery Factors of Serial Entrepreneurs: Focusing on Small Business (연속 기업가의 사업 실패 회복요인에 관한 탐색적 연구: 소상공인을 중심으로)

  • Lee, Kyung Suk;Park, Joo Yeon;Sung, Chang Soo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.6
    • /
    • pp.17-29
    • /
    • 2021
  • Recently, as social distancing have been raised due to the re-spread of COVID-19, the number of serial entrepreneurs who are closing their business is rapidly increasing. Learning from failure is a source of success, but business failure can result in psychological and economic losses and negative emotions of the serial entrepreneur. At this point, it is very important to find a way to recover the negative emotions caused by business failures of serial entrepreneurs. Recently, a strategic model has emerged to deal with the negative emotions of grief caused by business failures of serial entrepreneurs. This study identified the recovery factors from the grief of business failures of serial entrepreneurs and analyzed Shepherd's(2003) three areas: loss orientation, restoration orientation, and dual process. To this end, individual in-depth interviews were conducted with 12 small business serial entrepreneurs who challenged re-startup to identify the attributes of recovery factors that were not identified with quantitative data. As a result of the study, first, recovery factors were investigated in three areas: individual orientation, family orientation, and network orientation. It was found to help improve recovery in nine categories: self-esteem, persistence, personal competence, hobbies, self-confidence, family support, networks, religion, and social support. Second, recovery obstacle factors were investigated in three areas: psychological, economic, and environmental factors. Nine categories including family, health, social network, business partner, competitor, partner, fund, external environment, and government policy were found to persist negative emotions. Third, the emotional processing process for grief was investigated in three areas: loss orientation, restoration orientation, and dual process. Ten categories such as family, partner support, social member support, government support, hobbies, networks, change of business field, moving, third-party perspective, and meditation were confirmed to enhance rapid recovery in the emotional processing process for grief. The implications of this study are as follows. The process of recovering from the grief caused by business failures of serial entrepreneurs was attempted by a qualitative study. By extending the theory of Shepherd(2003), This study can be applied to help with recovery research. In addition, conceptual models and propositions for future empirical research were presented, which can be discussed in carious academic ways.

Satellite-Based Cabbage and Radish Yield Prediction Using Deep Learning in Kangwon-do (딥러닝을 활용한 위성영상 기반의 강원도 지역의 배추와 무 수확량 예측)

  • Hyebin Park;Yejin Lee;Seonyoung Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1031-1042
    • /
    • 2023
  • In this study, a deep learning model was developed to predict the yield of cabbage and radish, one of the five major supply and demand management vegetables, using satellite images of Landsat 8. To predict the yield of cabbage and radish in Gangwon-do from 2015 to 2020, satellite images from June to September, the growing period of cabbage and radish, were used. Normalized difference vegetation index, enhanced vegetation index, lead area index, and land surface temperature were employed in this study as input data for the yield model. Crop yields can be effectively predicted using satellite images because satellites collect continuous spatiotemporal data on the global environment. Based on the model developed previous study, a model designed for input data was proposed in this study. Using time series satellite images, convolutional neural network, a deep learning model, was used to predict crop yield. Landsat 8 provides images every 16 days, but it is difficult to acquire images especially in summer due to the influence of weather such as clouds. As a result, yield prediction was conducted by splitting June to July into one part and August to September into two. Yield prediction was performed using a machine learning approach and reference models , and modeling performance was compared. The model's performance and early predictability were assessed using year-by-year cross-validation and early prediction. The findings of this study could be applied as basic studies to predict the yield of field crops in Korea.

Retrieval of Hourly Aerosol Optical Depth Using Top-of-Atmosphere Reflectance from GOCI-II and Machine Learning over South Korea (GOCI-II 대기상한 반사도와 기계학습을 이용한 남한 지역 시간별 에어로졸 광학 두께 산출)

  • Seyoung Yang;Hyunyoung Choi;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.933-948
    • /
    • 2023
  • Atmospheric aerosols not only have adverse effects on human health but also exert direct and indirect impacts on the climate system. Consequently, it is imperative to comprehend the characteristics and spatiotemporal distribution of aerosols. Numerous research endeavors have been undertaken to monitor aerosols, predominantly through the retrieval of aerosol optical depth (AOD) via satellite-based observations. Nonetheless, this approach primarily relies on a look-up table-based inversion algorithm, characterized by computationally intensive operations and associated uncertainties. In this study, a novel high-resolution AOD direct retrieval algorithm, leveraging machine learning, was developed using top-of-atmosphere reflectance data derived from the Geostationary Ocean Color Imager-II (GOCI-II), in conjunction with their differences from the past 30-day minimum reflectance, and meteorological variables from numerical models. The Light Gradient Boosting Machine (LGBM) technique was harnessed, and the resultant estimates underwent rigorous validation encompassing random, temporal, and spatial N-fold cross-validation (CV) using ground-based observation data from Aerosol Robotic Network (AERONET) AOD. The three CV results consistently demonstrated robust performance, yielding R2=0.70-0.80, RMSE=0.08-0.09, and within the expected error (EE) of 75.2-85.1%. The Shapley Additive exPlanations(SHAP) analysis confirmed the substantial influence of reflectance-related variables on AOD estimation. A comprehensive examination of the spatiotemporal distribution of AOD in Seoul and Ulsan revealed that the developed LGBM model yielded results that are in close concordance with AERONET AOD over time, thereby confirming its suitability for AOD retrieval at high spatiotemporal resolution (i.e., hourly, 250 m). Furthermore, upon comparing data coverage, it was ascertained that the LGBM model enhanced data retrieval frequency by approximately 8.8% in comparison to the GOCI-II L2 AOD products, ameliorating issues associated with excessive masking over very illuminated surfaces that are often encountered in physics-based AOD retrieval processes.