The Taiwanese liquid crystal display (LCD) industry has traditionally produced a huge amount of waste glass that is placed in landfills. Waste glass recycling can reduce the material costs of concrete and promote sustainable environmental protection activities. Concrete is always utilized as structural material; thus, the concrete compressive strength with a variety of mixtures must be studied using predictive models to achieve more precise results. To create an efficient waste LCD glass concrete (WLGC) design proportion, the related studies utilized a multivariable regression analysis to develop a compressive strength waste LCD glass concrete equation. The mix design proportion for waste LCD glass and the compressive strength relationship is complex and nonlinear. This results in a prediction weakness for the multivariable regression model during the initial growing phase of the compressive strength of waste LCD glass concrete. Thus, the R ratio for the predictive multivariable regression model is 0.96. Neural networks (NN) have a superior ability to handle nonlinear relationships between multiple variables by incorporating supervised learning. This study developed a multivariable prediction model for the determination of waste LCD glass concrete compressive strength by analyzing a series of laboratory test results and utilizing a neural network algorithm that was obtained in a related prior study. The current study also trained the prediction model for the compressive strength of waste LCD glass by calculating the effects of several types of factor combinations, such as the different number of input variables and the relevant filter for input variables. These types of factor combinations have been adjusted to enhance the predictive ability based on the training mechanism of the NN and the characteristics of waste LCD glass concrete. The selection priority of the input variable strategy is that evaluating relevance is better than adding dimensions for the NN prediction of the compressive strength of WLGC. The prediction ability of the model is examined using test results from the same data pool. The R ratio was determined to be approximately 0.996. Using the appropriate input variables from neural networks, the model validation results indicated that the model prediction attains greater accuracy than the multivariable regression model during the initial growing phase of compressive strength. Therefore, the neural-based predictive model for compressive strength promotes the application of waste LCD glass concrete.
Recently, 3D stereoscopic video and HTTP adaptive streaming technologies have received a lot of attention from relevant industrial fields and markets in terms of multimedia contents and delivery services, respectively. It is expected that promising and marketable service models can be created by means of these noticeable two technologies. However, current standard specifications do not provide a method for organized connection between those two technologies. 3D stereoscopic video services are weighted in broadcasting and storage services that are only available under environments in which the network bandwidth is guaranteed or free. Also, HTTP adaptive streaming technologies only provide plain 3D service methods that are dependent on particular Codec. Therefore, this paper proposes 3D video delivery format for HTTP adaptive streaming service which enables stable and seamless display for various stereoscopic video sequences over internet networks. The proposed technology is designed on the basis of Stereoscopic Video Application Format which is a service-oriented standard specification for storing stereoscopic video sequences. Also, this delivery format is directly applicable over DASH that is the representative standard technology for HTTP adaptive streaming services. The delivery format proposed in this paper has been submitted to MPEG and it has been accepted as a working draft, thus it expected to pave the way for practical industrialization in relevant fields from now on.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.10
no.6
/
pp.27-36
/
2015
The purpose of this study was to investigate the influence relationships among individual career orientation, preparation of old age, social networks, and the entrepreneurial intention of the potential entrepreneurs. 408 numbers of structured questionnaire were collected from the potential entrepreneurs who live in Seoul through the online Google survey method and offline face to face method. And the collected data was analyzed on frequency analysis, validity analysis, t-test, ANOVA, and regression analysis etc. using the SPSS WIN 21.0 program. The results are as follows. Firstly, innovation, entrepreneurial creativity, and autonomy orientation affect on entrepreneurial intention positively(+), but security orientation has a negative(-) effect on entrepreneurial intention in the influence relationships between individual career orientation and entrepreneurial intention. Secondly, economical and emotional preparation have positive(+) influences on entrepreneurial intention in the influence relationships between individual career orientation and entrepreneurial intention. Thirdly, the sub-variables of social networks, that is, assist and role models exert a positive(+) influence on entrepreneurial intention in the influence relationships between social networks and entrepreneurial intention. Fourthly, social networks plays a moderating role only on the relationship between security orientation and entrepreneurial intention in the analysis about the moderating effects of social networks on the influence relationships among individual career orientation, preparation of old age, and entrepreneurial intention. Fifth, a social network of relationships to help prepare the old establishment has been found to help regulate effective analysis of whether or not the results of adjustment.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.13
no.5
/
pp.131-154
/
2018
While strong investments on startup and venture ecosystem prosper worldwide, growing interest on nurturing startup ecosystem in Korea is also on its way. However, korean entrepreneurial ecosystem currently results few successful business models with those continuous development of itself compared to the one in China, which is breeding more than 50% of unicorns internationally. Accordingly, this study examined how people in the venture ecosystem, especially in IT industry feel about themselves and startup itself and compared startup ecosystem in Seoul, Korea to the one in Chengdu, China considering each of economic, social and administrational environment. The study tried to provide an implication about the future orientation of Korea's starup and venture ecosystem to policy makers and the ones inside the environment to make a better one. Therefore, the study choose Seoul, Korea and Chengdu, China as geological specimens of startup ecosystem and conduct qualitative study by interviewing selected ones who work in startup incubator, accelerator specified to IT industry and started their own business in IT industry funded by startup reward program. The study categorize the result in social, economic, and administrative parts and screens whether the interviewees from both Korea and China have similar opinions toward each of questions and can be translated to have tendency or not in each part of study. According to the study, the national recognition of startup should be moved from means of maintenance such as restaurants, franchise business to IT startup especially based on software business for the sustainable flourish in Korean venture ecosystem. Investors including accelerator, Angel investors and VCs should be less risk-aversion and therefore prefer stake purchase to solely giving subsidies. The role of governors should be limited to be a middleman of the network, connecting each people in need inside the ecosystem and their reward program should focus on nurturing the growing ones, not just multiplying the numbers of startups to expand the size of entrepreneurial ecosystem. Since this study indicated that entire revision of startup ecosystem should be applied to make a better one, it could be used to design future entrepreneurial infrastructure and the ways of activating startup ecosystem elsewhere in Korea.
Park, Su-Wan;Lee, Hyeong-Seok;Bae, Cheol-Ho;Kim, Kyu-Lee
Journal of Korea Water Resources Association
/
v.42
no.7
/
pp.525-535
/
2009
In this paper a heuristic method for identifying individual pipes in water pipe networks to determine specific sections of the pipes that need to be replaced due to deterioration. An appropriate minimum pipe length is determined by selecting the pipe length that has the greatest variance of the average cumulative break number slopes among the various pipe lengths used. As a result, the minimum pipe length for the case study water network is determined as 4 m and a total of 39 individual pipe IDs are obtained. The economically optimal replacement times of the individual pipe IDs are estimated by using the threshold break rate of an individual pipe ID and the pipe break trends models for which the General Pipe Break Prediction Model(Park and Loganathan, 2002) that can incorporate the linear, exponential, and in-between of the linear and exponetial failure trends and the ROCOFs based on the modified time scale(Park et al., 2007) are used. The maximum log-likelihoods of the log-linear ROCOF and Weibull ROCOF estimated for the break data of a pipe are compared and the ROCOF that has a greater likelihood is selected for the pipe of interest. The effects of the social costs of a pipe break on the optimal replacement time are also discussed.
In this paper a method for estimating the 'service life' and 'residual life' of a water pipe based on the Water Pipe Network Performance Evaluation(WPNPE) results of Water Supply Technical Diagnosis was developed for efficient maintenance of water pipes. The residual life of a pipe was defined as the difference between the service life and elapsed time since installation. The service life was defined as the time when a pipe reaches the reference score for determining deteriorated pipes that was used in the WPNPE. The pipe evaluation criteria and deterioration scores used in the WPNPE for the case study area were considered as independent variables in the multiple regression model for estimating the service life and residual life of the pipes in the area. To estimate the service life for the pipes the reference scores for determining deteriorated pipes were used as the values of the variables that represent the deterioration scores in the constructed regression models. Subsequently, the statistics of the service life and residual life of the pipes in the case study area were presented and analyzed in comparison with the service life defined by the Local Public Enterprizes Act.
Community-based Question Answering system is a system which provides answers for each question from the documents uploaded on web communities. In order to enhance the capacity of question analysis, former methods have developed specific rules suitable for a target region or have applied machine learning to partial processes. However, these methods incur an excessive cost for expanding fields or lead to cases in which system is overfitted for a specific field. This paper proposes a multiple machine learning method which automates the overall process by adapting appropriate machine learning in each procedure for efficient processing of community-based Question Answering system. This system can be divided into question analysis part and answer selection part. The question analysis part consists of the question focus extractor, which analyzes the focused phrases in questions and uses conditional random fields, and the question type classifier, which classifies topics of questions and uses support vector machine. In the answer selection part, the we trains weights that are used by the similarity estimation models through an artificial neural network. Also these are a number of cases in which the results of morphological analysis are not reliable for the data uploaded on web communities. Therefore, we suggest a method that minimizes the impact of morphological analysis by using character features in the stage of question analysis. The proposed system outperforms the former system by showing a Mean Average Precision criteria of 0.765 and R-Precision criteria of 0.872.
Journal of the Korean Institute of Intelligent Systems
/
v.15
no.7
/
pp.846-851
/
2005
In this paper, we propose Genetic Algorithms(GAs)-based Optimized Polynomial Neural Networks(PNN). The proposed algorithm is based on Group Method of Data Handling(GMDH) method and its structure is similar to feedforward Neural Networks. But the structure of PNN is not fixed like in conventional neural networks and can be generated in a dynamic manner. As each node of PNN structure, we use several types of high-order polynomial such as linear, quadratic and modified quadratic, and it is connected as various kinds of multi-variable inputs. The conventional PNN depends on the experience of a designer that select the number of input variables, input variable and polynomial type. Therefore it is very difficult to organize optimized network. The proposed algorithm leads to identify and select the number of input variables, input variable and polynomial type by using Genetic Algorithms(GAs). The aggregate performance index with weighting factor is proposed as well. The study is illustrated with tile NOx omission process data of gas turbine power plant for application to nonlinear process. In the sequel the proposed model shows not only superb predictability but also high accuracy in comparison to the existing intelligent models.
Purpose - Over 90% of Domestic logistics industry is small enterprise and they are experiencing growth stagnation due to price-based competition structure rather than constructing logistics service of high added value. In order to get over this situation and pursue the development of logistics industry, strengthening its competitiveness, through inter-enterprise cooperative network build-up, would be a key alternative. Therefore, in this study, an index for measuring inter-enterprise cooperation level of Joint logistics business will be developed as a typical collaborative business model in logistics industry. Moreover, a strengthening competitiveness method suggests a developmental step and a key management index to mature in logistics industry. Research Design, Data, Methodology - This study is an index development research for measuring inter-enterprise cooperation level of logistics industry. Such a level was measured by performing a survey by targeting enterprises that participated in Joint logistics business. The targeting enterprises are typical cooperative models in logistics industry. Measurement items were developed which were based on the presented items in existing research. Question items were composed of selection type questions as answering Yes/No. They measures implementation status of corporate activity and detailed activity items measuring qualitative level. Total samples were based on 116 enterprise samples including 90 logistics enterprises and 26 shippers. In addition, by evaluating the importance for Joint logistics business recognition with personnel working level, the weight of measuring variable was extracted. This study has built an assessment tools (LPCI) on Joint logistics business cooperation level in a situation where there are no previous studies on joint logistics business, this study is meaningful for other studies. Results - As a result of analyzing LPCI presented in this study, the score of logistics enterprise was represented as 59.9 points based on full score of 100 points and that of shippers as 47.2 points and cooperation level among enterprises participated in Joint logistics business was revealed to be very low. In particular, as a result of measuring the importance between logistics enterprise and shippers, the difference by each measurement standard was represented among those enterprises. This difference is considered to be a key factor that cooperative operational conformity between logistics enterprises and shippers is represented to be low. Conclusions - As most joint logistics business, being promoted at present, is sharing facility and information with joint logistics business, it is hard to find such a joint logistics business in reality based on cooperative business model in main cooperation agents. Therefore, competitiveness of logistics industry could be strengthened by promoting joint logistics business based on their mutual cooperation among enterprises. In other words, it is to secure sustainable competitiveness of joint logistics business together with creation of new market by inter-enterprise cooperation based on integration of basic logistics business.
SNS has been emerged as an effective educational tool in college and many studies on various teaching models and methodologies have been made in order to utilize SNS in education. The purpose of this paper is to empirically investigate the effect of affecting factors of SNS on learner's attitude, intention to re-use and performance in converging college educational environment. Self-efficacy on media usage, educational expectancy, subjective norm, habit, and enjoyment were identified as affecting factors based on prior researches. An empirical analysis was attempted by survey targeting college students. The results of structural equation model using Smart PLS shows that educational expectancy, subjective norm, and enjoyment are significantly related to the learner's attitude on use of SNS in college education, but Self-efficacy on media usage and habit are not. Learner's attitude on SNS in college education was found to be significantly related to the intention to continuous use and performance. This study implicates that using SNS in university class makes learner's attitude positively and finally lead to good performance. The analysis results can provide a guideline of effective strategy for SNS utilization in college education.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.