• Title/Summary/Keyword: Network mapping

Search Result 680, Processing Time 0.028 seconds

RBF Neural Network Based SLM Peak-to-Average Power Ratio Reduction in OFDM Systems

  • Sohn, In-Soo
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.402-404
    • /
    • 2007
  • One of the major disadvantages of the orthogonal frequency division multiplexing system is high peak-to-average power ratio (PAPR). Selected mapping (SLM) is an efficient distortionless PAPR reduction scheme which selects the minimum PAPR sequence from a group of independent phase rotated sequences. However, the SLM requires explicit side information and a large number of IFFT operations. In this letter we investigate a novel PAPR reduction method based on the radial basis function network and SLM.

  • PDF

An Analysis of Dishonor Pattern Using TAM Network (TAM 네트워크를 이용한 부도 패턴 분석)

  • 정순용;장완재;황승국
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.338-341
    • /
    • 2003
  • TIn this study, by formulating input layer, category later, and output layer from data, and in using TAM(Topographic Attentive Mapping) network that created fuzzy rule, it categorized into companies went bankrupt with finances in the black figures, and in the red figures.

  • PDF

Optimal Method for Binary Neural Network using AETLA (AETLA를 이용한 이진 신경회로망의 최적 합성방법)

  • 성상규;정종원;이준탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.105-108
    • /
    • 2001
  • In this paper, the learning algorithm called advanced expanded and truncate algorithm(AETLA) is proposed to training multilayer binary neural network to approximate binary to binary mapping. AETLA used merit of ETL and MTGA learning algorithm. We proposed to new learning algorithm to decrease number of hidden layer. Therefore, learning speed of the proposed AETLA learning algorithm is much faster than other learning algorithm.

  • PDF

A D2D communication architecture under full control using SDN

  • Ngo, Thanh-Hai;Kim, Younghan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3435-3454
    • /
    • 2016
  • Device-to-device (D2D) communication is a potential solution to the incessant increase in data traffic on cellular networks. The greatest problem is how to control the interference between D2D users and cellular mobile users, and between D2D users themselves. This paper proposes a solution for this issue by putting the full control privilege in cellular network using the software-defined networking (SDN) concept. A software virtual switch called Open vSwitch and several components are integrated into mobile devices for data forwarding and radio resource mapping, whereas the control functions are executed in the cellular network via a SDN controller. This allows the network to assign radio resources for D2D communication directly, thus reducing interference. This solution also brings out many benefits, including resource efficiency, energy saving, topology flexibility, etc. The advantages and disadvantages of this architecture are analyzed by both a mathematical method and a simple implementation. The result shows that implementation of this solution in the next generation of cellular networks is feasible.

A Study on the Diagnosis of Cutting Tool States Using Cutting Conditions and Cutting Force Parameters(II) -Decision Making- (절삭조건과 절삭력 파라메타를 이용한 공구상태 진단에 관한 연구(II) -의사결정 -)

  • 정진용;서남섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.105-110
    • /
    • 1998
  • In this study, statistical and neural network methods were used to recognize the cutting tool states. This system employed the tool dynamometer and cutting force signals which are processed from the tool dynamometer sensor using linear discriminent function. To learn the necessary input/output mapping for turning operation diagnosis, the weights and thresholds of the neural network were adjusted according to the error back propagation method during off-line training. The cutting conditions, cutting force ratios and statistical values(standard deviation, coefficient of variation) attained from the cutting force signals were used as the inputs to the neural network. Through the suggested neural network a cutting tool states may be successfully diagnosed.

  • PDF

Variable structure control of robot manipulator using neural network (신경 회로망을 이용한 가변 구조 로보트 제어)

  • 이종수;최경삼;김성민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.7-12
    • /
    • 1990
  • In this paper, we propose a new manipulator control scheme based on the CMAG neural network. The proposed control consists of two components. The feedforward component is an output of trained CMAC neural network and the feedback component is a modified sliding mode control. The CMAC accepts the position, velocity and acceleration of manipulator as input and outputs two values for the controller : One is the nominal torque used for feedforward compensation(M1 network) and the other is the inertia matrix related information used for the feedback component(M2 network). Since the used control algorithm guarantees the robust trajectory tracking in spite of modeling errors, the CMAC mapping errors due to the memory limitation are little worth consideration.

  • PDF

A Coordinated Heuristic Approach for Virtual Network Embedding in Cloud Infrastructure

  • Nia, Nahid Hamzehee;Adabi, Sepideh;Nategh, Majid Nikougoftar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2346-2361
    • /
    • 2017
  • A major challenge in cloud infrastructure is the efficient allocation of virtual network elements on top of substrate network elements. Path algebra is a mathematical framework which allows the validation and convergence analysis of the mono-constraint or multi-constraint routing problems independently of the network topology or size. The present study proposes a new heuristic approach based on mathematical framework "paths algebra" to map virtual nodes and links to substrate nodes and paths in cloud. In this approach, we define a measure criterion to rank the substrate nodes, and map the virtual nodes to substrate nodes according to their ranks by using a greedy algorithm. In addition, considering multi-constraint routing in virtual link mapping stage, the used paths algebra framework allows a more flexible and extendable embedding. Obtained results of simulations show appropriate improvement in acceptance ratio of virtual networks and cost incurred by the infrastructure networks.

Drone Deployment Using Coverage-and-Energy-Oriented Technique in Drone-Based Wireless Sensor Network (드론 기반 무선 센서 네트워크에서의 커버리지와 에너지를 고려한 드론 배치)

  • Kim, Tae-Rim;Song, Jong-Gyu;Im, Hyun-Jae;Kim, Bum-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.15-22
    • /
    • 2019
  • Awireless sensor network utilizes small sensors with a low cost and low power being deployed over a wide area. They monitor the surrounding environment and gather the associated information to transmit it to a base station via multi-hop transmission. Most of the research has mainly focused on static sensors that are located in a fixed position. Unlike a wireless sensor network based on static sensors, we can exploit drone-based technologies for more efficient wireless networks in terms of coverage and energy. In this paper, we introduce a transmission power model and a video encoding power model to design the network environment. We also explain a priority mapping scheme, and deploy drones oriented for network coverage and energy consumption. Through our simulations, this research shows coverage and energy improvements in adrone-based wireless sensor network with fewer sensors, compared to astatic sensor-based wireless sensor network. Concretely, coverage increases by 30% for thedrone-based wireless sensor network with the same number of sensors. Moreover, we save an average of 25% with respect to the total energy consumption of the network while maintaining the coverage required.

지리정보시스템을 위한 기존지도의 수치화에 관한 소개

  • 이현우
    • Computational Structural Engineering
    • /
    • v.4 no.2
    • /
    • pp.32-35
    • /
    • 1991
  • 컴퓨터가 발명된 초기에는 대부분 수식계산 처리만이 목적이었으나, 현재는 계산처리의 용도는 물론이고, M.I.S.(Management Information System), 자료의 생성.보관.처리.관리, Computer Graphics에 널리 이용되고 있으며 A.T.(Artificial Interligence), N.N.(Neural Network)까지 활용, 발전되어가고 있는 추세이다. 본 글에서는 현재 국내에서 부상하고 있는 G.I.S.(Geographic Information System)의 소개와 G.I.S.에서 필요로 하는 기존지도의 수치화(Digital Mapping)의 방법과정을 설명하고자 한다.

  • PDF

Virtual Network Embedding with Multi-attribute Node Ranking Based on TOPSIS

  • Gon, Shuiqing;Chen, Jing;Zhao, Siyi;Zhu, Qingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.522-541
    • /
    • 2016
  • Network virtualization provides an effective way to overcome the Internet ossification problem. As one of the main challenges in network virtualization, virtual network embedding refers to mapping multiple virtual networks onto a shared substrate network. However, existing heuristic embedding algorithms evaluate the embedding potential of the nodes simply by the product of different resource attributes, which would result in an unbalanced embedding. Furthermore, ignoring the hops of substrate paths that the virtual links would be mapped onto may restrict the ability of the substrate network to accept additional virtual network requests, and lead to low utilization rate of resource. In this paper, we introduce and extend five node attributes that quantify the embedding potential of the nodes from both the local and global views, and adopt the technique for order preference by similarity ideal solution (TOPSIS) to rank the nodes, aiming at balancing different node attributes to increase the utilization rate of resource. Moreover, we propose a novel two-stage virtual network embedding algorithm, which maps the virtual nodes onto the substrate nodes according to the node ranks, and adopts a shortest path-based algorithm to map the virtual links. Simulation results show that the new algorithm significantly increases the long-term average revenue, the long-term revenue to cost ratio and the acceptance ratio.