• 제목/요약/키워드: Network graph

검색결과 703건 처리시간 0.027초

최대 인접 병합 방법을 적용한 방향 그래프의 병목지점 탐색 알고리즘 (A Bottleneck Search Algorithm for Digraph Using Maximum Adjacency Merging Method)

  • 이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권5호
    • /
    • pp.129-139
    • /
    • 2012
  • 공급처 s와 수요처 t, 호가 수용량을 갖고 있는 방향 그래프 망 $D=(N,A),n{\in}N,a=c(u,v){\in}A$에 대해, 공급처 s에서 수요처 t로의 최대 흐름양은 N을 $s{\in}S$$t{\in}T$의 집합으로 분리시키는 최소절단값이 결정한다. 최소절단을 찾는 대표적인 알고리즘으로는 수행복잡도 $O(NA^2)$의 Ford-Fulkerson이 있다. 이 알고리즘은 가능한 모든 증대경로를 탐색하여 병목지점을 결정한다. 알고리즘이 종료되면 병목지점들의 조합으로 N=S+T의 절단이 되는 최소 절단을 결정해야 한다. 본 논문은 S={s}, T={t}를 초기값으로 설정하고, 망의 최대 수용량 호 $_{max}c(u,v)$를 인접한 S나 T로 병합시키고 절단값을 구하는 최대인접병합 알고리즘을 제안하였다. 최대인접병합 알고리즘은 n-1회를 수행하지만 알고리즘 수행 과정에서 최소절단을 찾는 장점을 갖고 있다. Ford-Fulkerson과 최대인접병합 알고리즘을 다양한 8개의 방향 그래프에 적용한 결과 제안된 알고리즘은 수행복잡도 O(N)인 n-1회 수행 과정에서 최소절단을 쉽게 찾을 수 있었다.

스킵연결이 적용된 오토인코더 모델의 클러스터링 성능 분석 (Clustering Performance Analysis of Autoencoder with Skip Connection)

  • 조인수;강윤희;최동빈;박용범
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권12호
    • /
    • pp.403-410
    • /
    • 2020
  • 오토인코더의 데이터 복원(Output result) 기능을 이용한 노이즈 제거 및 초해상도와 같은 연구가 진행되는 가운데 오토인코더의 차원 축소 기능을 이용한 클러스터링의 성능 향상에 대한 연구도 활발히 진행되고 있다. 오토인코더를 이용한 클러스터링 기능과 데이터 복원 기능은 모두 동일한 학습을 통해 성능을 향상시킨다는 공통점이 있다. 본 논문은 이런 특징을 토대로, 데이터 복원 성능이 뛰어나도록 설계된 오토인코더 모델이 클러스터링 성능 또한 뛰어난지 알아보기 위한 실험을 진행했다. 데이터 복원 성능이 뛰어난 오토인코더를 설계하기 위해서 스킵연결(Skip connection) 기법을 사용했다. 스킵연결 기법은 기울기 소실(Vanishing gradient)현상을 해소해주고 모델의 학습 효율을 높인다는 장점을 가지고 있을 뿐만 아니라, 데이터 복원 시 손실된 정보를 보완해 줌으로써 데이터 복원 성능을 높이는 효과도 가지고 있다. 스킵연결이 적용된 오토인코더 모델과 적용되지 않은 모델의 데이터 복원 성능과 클러스터링 성능을 그래프와 시각적 추출물을 통해 결과를 비교해 보니, 데이터 복원 성능은 올랐지만 클러스터링 성능은 떨어지는 결과를 확인했다. 이 결과는 오토인코더와 같은 신경망 모델이 출력된 결과 성능이 좋다고 해서 각 레이어들이 데이터의 특징을 모두 잘 학습했다고 확신할 수 없음을 알려준다. 마지막으로 클러스터링의 성능을 좌우하는 잠재변수(latent code)와 스킵연결의 관계를 분석하여 실험 결과의 원인에 대해 파악하였고, 파악한 결과를 통해 잠재변수와 스킵연결의 특징정보를 이용해 클러스터링의 성능저하 현상을 보완할 수 있다는 사실을 보였다. 이 연구는 한자 유니코드 문제를 클러스터링 기법을 이용해 해결하고자 클러스터링 성능 향상을 위한 선행연구이다.

과원 환경과 경관 요소가 사과원 주요 나방류 해충 발생에 미치는 영향 (Effects of Orchard Environments and Landscape Features on the Population Occurrence of Major Lepidopteran Pests in Apple Orchards)

  • 김향미;정철의
    • 한국응용곤충학회지
    • /
    • 제60권1호
    • /
    • pp.79-90
    • /
    • 2021
  • 농업생산생태계 내 경관의 구조와 구성은 해충과 천적을 비롯한 생물다양성을 결정하는 중요한 요소이다. 이 연구는 경남 거창군 80개 사과원을 대상으로 경관 구조가 나비목 해충의 발생에 영향을 미칠 수 있는 지를 조사하였다. 과수원의 지정학적 특징, 농약 사용패턴과 과원 관리 방법 등에 대한 정보는 설문 조사를 통해 추가로 분석하였다. 과수원 주변 경관 구조는 인공위성자료에 바탕하여 추출하였다. 복숭아순나방 발생량이 가장 많았고, 사과굴나방, 복숭아심식나방, 사과잎말이나방 순으로 발생하였다. 농가에서는 살균제와 살충제를 각 12.4회, 살비제는 2.4회 살포하였다. 대부분 사과원 주변 식생은 사과 또는 논이었으며, 자두, 복숭아, 포도 또는 폐과원이 있을 경우 복숭아순나방 밀도가 특히 높았다. 복숭아심식나방 역시 주변에 복숭아나 포도가 있을 경우 그 발생량이 더 높았다. 사과굴나방은 복숭아, 포도, 폐과원 그리고 대추가 있는 지역에서 발생량이 많았다. 이러한 결과는 농업 지역에서 경관 관리는 농촌 어메니티 개선뿐 아니라 병해충 관리의 차원에서 기능적 다양성을 추구하는 방향으로 진행되어야 한다는 점을 시사한다.

키워드 출현 빈도 분석과 CONCOR 기법을 이용한 ICT 교육 동향 분석 (Analysis of ICT Education Trends using Keyword Occurrence Frequency Analysis and CONCOR Technique)

  • 이영석
    • 산업융합연구
    • /
    • 제21권1호
    • /
    • pp.187-192
    • /
    • 2023
  • 본 연구는 기계학습의 키워드 출현 빈도 분석과 CONCOR(CONvergence of iteration CORrealtion) 기법을 통한 ICT 교육에 대한 흐름을 탐색한다. 2018년부터 현재까지의 등재지 이상의 논문을 'ICT 교육'의 키워드로 구글 스칼라에서 304개 검색하였고, 체계적 문헌 리뷰 절차에 따라 ICT 교육과 관련이 높은 60편의 논문을 선정하면서, 논문의 제목과 요약을 중심으로 키워드를 추출하였다. 단어 빈도 및 지표 데이터는 자연어 처리의 TF-IDF를 통한 빈도 분석, 동시 출현 빈도의 단어를 분석하여 출현 빈도가 높은 49개의 중심어를 추출하였다. 관계의 정도는 단어 간의 연결 구조와 연결 정도 중심성을 분석하여 검증하였고, CONCOR 분석을 통해 유사성을 가진 단어들로 구성된 군집을 도출하였다. 분석 결과 첫째, '교육', '연구', '결과', '활용', '분석'이 주요 키워드로 분석되었다. 둘째, 교육을 키워드로 N-GRAM 네트워크 그래프를 진행한 결과 '교육과정', '활용'이 가장 높은 단어의 관계로 나타났다. 셋째, 교육을 키워드로 군집분석을 한 결과, '교육과정', '프로그래밍', '학생', '향상', '정보'의 5개 군이 형성되었다. 이러한 연구 결과를 바탕으로 ICT 교육 동향의 분석 및 트렌드 파악을 토대로 ICT 교육에 필요한 실질적인 연구를 수행할 수 있을 것이다.

수질사고 예방형 상수도 관망 밸브 시스템 설계 (A new approach to design isolation valve system to prevent unexpected water quality failures)

  • 박경진;신금채;이승엽
    • 한국수자원학회논문집
    • /
    • 제55권spc1호
    • /
    • pp.1211-1222
    • /
    • 2022
  • 상수도 관망 운영 단계에서 비정상상황은 필연적으로 발생하며, 이때 밸브를 이용한 구역의 격리가 필요하다. 밸브를 이용한 구역 격리 시 흐름 경로와 유향, 유속의 변화와 같은 수리적 변화로 인해 수리적 피해는 불가피하며, 대부분의 기존 연구들은 수리적 피해를 최소화할 수 있도록 밸브의 위치를 결정하여 왔다. 다만, 수리적 변화는 예지치 못한 수질 사고를 유발할 수 있기에, 격리 시 수질 사고 발생 여부를 미리 판단할 필요가 있다. 이에 본 연구에서는 밸브 위치에 따른 예지치 못한 수질 문제를 예방할 수 있는 밸브 설계 방안을 제안한다. 이를 위한 격리 전후의 관로별 흐름 특성 변화율을 정량화하는 유향 변경률 인자(Flow Direction Change Ratio, FDCR)와 신뢰도(reliability)를 고려한 최적 설계 방법론을 제안하였으며, 해당 모형을 가상 상수도 관망에 적용하여 FDCR 고려 유무에 따른 설계안을 비교하였다. 설계 결과 FDCR을 고려한 경우 기존 설계안 대비 유향 변동이 없는 것을 확인하였으며, 세그먼트 격리에 따른 절점별 압력과 관별 유속의 평균과 변동성을 확인한 결과 기존 설계안 대비 우수한 성능을 나타냄을 확인하였다. 또한 설계안 비교를 위해 그래프 이론 기반 인자인 수리학적 거리 인자(Hydrualic Geodesic Index, HGI)를 활용하였으며, HGI가 높은 설계안이 유향 변동성이 낮은 것으로 나타났다. 본 연구는 향후 수질 사고를 고려한 밸브 시스템의 설계 및 운영에 활용할 수 있을 것으로 기대한다.

교육학 분야에서 CiteSpace에 기초한 구성주의 연구 동향 탐색 (A Dynamic exploration of Constructivism Research based on Citespace Software in the Filed of Education)

  • 장위신;송선희
    • 한국콘텐츠학회논문지
    • /
    • 제22권5호
    • /
    • pp.576-584
    • /
    • 2022
  • 구성주의는 인지심리학의 중요한 한 갈래로 현재 교육학 분야와 심리학 분야에 모두 커다란 영향을 미치고 있다. 본 연구는 CiteSpace 시각화 소프트웨어를 분석 도구로 사용하여 최근 35년간 교육분야에서 구성주의에 관한 연구문헌에 대한 지식지도 분석을 하였다. 이를 위하여 'WOS(web of science)' 데이터베이스를 기초로 국외문헌분석을 위하여 'WOS 핵심 데이터베이스'의 문헌들을 사용하였고, 국내문헌분석을 위하여 'KCI(Korean Journal Database)데이터베이스'의 문헌들을 분석하였다. 분석 방향은 발표연도, 연구가 이루어진 국가(지역), 연구자, 기관 또는 대학별 협력관계 분석, 주제어 분석이었다. 연구를 통해 얻은 결론은 세 가지이다. 첫째, 구성주의라는 주제에 관한 연구는 1986년부터 지금까지 이어지고 있으며 현재는 안정적인 발전단계이다. 둘째, 구성주의라는 주제로 연구가 많이 이루어진 국가는 미국, 캐나다, 영국, 호주, 네덜란드 순이다. 연구의 주요 기관과 연구자도 주로 이들 국가에 분포돼 있다. 셋째, 현재 구성주의 연구들의 주제어는 'instructional strategies(교수전략)' 집합에 집중되어 있으며, 과학기술의 발전이 개인 학습에 영향을 미치고 있다. 향후 교수전략은 구성주의 연구의 중점내용이 될 것이며, 교수공학의 발달로 새로운 교수모델 개발과 관련된 연구가 이루어질 필요가 있다.

셋톱박스 오디언스 타겟팅을 위한 세션 기반 개인화 추천 시스템 개발 (Personalized Session-based Recommendation for Set-Top Box Audience Targeting)

  • 차지수;정구섭;김우영;양재원;백상덕;이원준;장서호;박태준;정찬우;김우주
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.323-338
    • /
    • 2023
  • 셋톱박스 오디언스(TV 시청자) 타겟팅의 핵심은 오디언스의 시청패턴을 분석하여 광고의 효과성이 높을 것으로 예상되는 오디언스에게 맞춤형 광고를 내보내는 것이다. 세션 기반 추천 시스템은 인터넷 광고 추천, 유저 검색 기록 기반 추천 등에 많이 이용되고 있지만, TV 광고의 측면에서 셋톱박스 데이터 수집의 어려움을 이유로 연구하기에 어려움이 있었다. 또한 오디언스 개인의 식별정보가 있는 데이터에서, 오디언스의 선호가 반영되는 시청 패턴을 모델링하는 데 한계가 있었다. 따라서 본 연구에서는 한국방송광고진흥공사(KOBACO)와 방송3사(SKB, KT, LGU+)와의 협업을 통해 익명화된 오디언스 4,847명의 6개월간 시청 데이터를 확보하여 연구를 진행하였으며, 유저-세션-아이템의 계층적 구조를 가지는 개인화 세션 기반 추천 시스템을 개발하여 성능 검증을 진행하였다. 그 결과, 셋톱박스 오디언스 데이터셋과 그 외 검증을 위한 2개의 데이터셋에서 제안된 모델이 비교 대상 모델보다 높은 성능을 보이는 것을 확인하였다.

A Study on the Implement of AI-based Integrated Smart Fire Safety (ISFS) System in Public Facility

  • Myung Sik Lee;Pill Sun Seo
    • 국제초고층학회논문집
    • /
    • 제12권3호
    • /
    • pp.225-234
    • /
    • 2023
  • Even at this point in the era of digital transformation, we are still facing many problems in the safety sector that cannot prevent the occurrence or spread of human casualties. When you are in an unexpected emergency, it is often difficult to respond only with human physical ability. Human casualties continue to occur at construction sites, manufacturing plants, and multi-use facilities used by many people in everyday life. If you encounter a situation where normal judgment is impossible in the event of an emergency at a life site where there are still many safety blind spots, it is difficult to cope with the existing manual guidance method. New variable guidance technology, which combines artificial intelligence and digital twin, can make it possible to prevent casualties by processing large amounts of data needed to derive appropriate countermeasures in real time beyond identifying what safety accidents occurred in unexpected crisis situations. When a simple control method that divides and monitors several CCTVs is digitally converted and combined with artificial intelligence and 3D digital twin control technology, intelligence augmentation (IA) effect can be achieved that strengthens the safety decision-making ability required in real time. With the enforcement of the Serious Disaster Enterprise Punishment Act, the importance of distributing a smart location guidance system that urgently solves the decision-making delay that occurs in safety accidents at various industrial sites and strengthens the real-time decision-making ability of field workers and managers is highlighted. The smart location guidance system that combines artificial intelligence and digital twin consists of AIoT HW equipment, wireless communication NW equipment, and intelligent SW platform. The intelligent SW platform consists of Builder that supports digital twin modeling, Watch that meets real-time control based on synchronization between real objects and digital twin models, and Simulator that supports the development and verification of various safety management scenarios using intelligent agents. The smart location guidance system provides on-site monitoring using IoT equipment, CCTV-linked intelligent image analysis, intelligent operating procedures that support workflow modeling to immediately reflect the needs of the site, situational location guidance, and digital twin virtual fencing access control technology. This paper examines the limitations of traditional fixed passive guidance methods, analyzes global technology development trends to overcome them, identifies the digital transformation properties required to switch to intelligent variable smart location guidance methods, explains the characteristics and components of AI-based public facility smart fire safety integrated system (ISFS).

영화 추천 시스템의 초기 사용자 문제를 위한 장르 선호 기반의 클러스터링 기법 (Clustering Method based on Genre Interest for Cold-Start Problem in Movie Recommendation)

  • 유띳로따낙;누르지드;하인애;조근식
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.57-77
    • /
    • 2013
  • 소셜 미디어는 모바일 어플리케이션과 웹에서 가장 많이 사용되는 미디어 중 하나이다. Nielsen사의 보고서에 따르면 소셜 네트워크 서비스와 블로그가 온라인 사용자의 주 활동 공간으로 사용되고 있으며, 미국인 중에서 온라인 활동이 왕성한 5명의 사용자중 4명은 매일 소셜 네트워크 서비스와 블로그를 방문하고 온라인 활동 시간의 23%를 소비한다고 집계하고 있다. 미국의 인터넷 사용자들은 야후, 구글, AOL 미디어 네트워크, 트위터, 링크드인 등과 같은 소셜 네트워크 서비스중 페이스북에서 가장 많은 시간을 소비한다. 최근에는 대부분의 회사들이 자신의 특정 상품에 대하여 "페이스북 페이지(Facebook Page)"를 생성하고 상품에 대한 프로모션을 진행한다. 페이스북에서 제공되는 "좋아요" 옵션은 페이스북 페이지를 통해 자신이 관심을 가지는 상품(아이템)을 표시하고 그 상품을 지지할 수 있도록 한다. 많은 영화를 제작하는 영화 제작사들도 페이스북 페이지와 "좋아요" 옵션을 이용하여 영화 프로모션과 마케팅에 이용한다. 일반적으로 다수의 스트리밍 서비스 제공업들도 영화와 TV 프로그램을 즐기며 볼 수 있는 서비스를 사용자들에게 제공한다. 이 서비스는 일반 컴퓨터와 TV 등의 단말기에서인터넷을 통해 영화와 TV 프로그램을 즉각적으로 제공할 수 있다. 스트리밍 서비스의 선두 주자인 넷플릭스는 미국, 라틴 아메리카, 영국 그리고 북유럽 국가 등에 3천만 명 이상의 스트리밍 사용자가 가입되어 있다. 또한 넥플릭스는 다양한 장르로 구성된 수백만 개의 영화와 TV 프로그램을 보유하고 있다. 하지만 수많은 콘텐츠로 인해 사용자들은 자신이 선호하는 장르에 관련된 영화와 TV 프로그램을 찾기 위해 많은 시간을 소비해야 된다. 많은 연구자들이 이러한 사용자의 불편함을 줄이기 위해 아이템에 대한 사용자가 보지 않은 아이템에 대한 선호도를 예측하고 높은 예측값을 갖는 아이템을 사용자에게 제공하기 위한 추천 시스템을 적용하였다. 협업적 여과 방법은 추천 시스템을 구축하기 위해 가장 많이 사용되는 방법이다. 협업적 여과 시스템은 사용자들이 평가한 아이템을 기반으로 각 사용자 간의 유사도를 측정하고 목적 사용자와 유사한 성향을 가진 사용자 그룹을 결정한다. 군집된 그룹은 이웃 사용자 집단으로 불리며 이를 이용하여 특정 아이템에 대한 선호도를 예측하고, 예측 값이 높은 아이템을 목적 사용자에게 추천해 준다. 협업적 여과 방법이 적용되는 분야는 서적, 음악, 영화, 뉴스 및 비디오 등 다양하지만 논문에서는 영화에 초점을 맞춘다. 이 협업적 여과 방법이 추천 시스템 내에서 유용하게 활용되고 있지만 아직 "희박성 문제"와 "콜드 스타트 문제" 등 해결해야 할 과제가 남아있다. 희박성 문제는 아이템의 수가 증가할수록 아이템에 대한 사용자의 로그 밀도가 감소하는 것이다. 즉, 전체 아이템 수에 비해 사용자가 아이템에 대해 평가한 정보가 충분하지 않기 때문에 사용자의 성향을 파악하기 어렵고, 이로 인해 사용자가 아직 평가하지 않은 아이템에 대해서 선호도를 추측하기 어려운 것을 말한다. 이 희박성 문제가 포함된 경우 적합한 이웃 사용자 집단을 형성하는데 어려움을 겪게 되고 사용자들에게 제공되는 아이템 추천의 질이 떨어지게 된다. 콜드 스타트 문제는 시스템 내에 새로 들어온 사용자 또는 아이템으로 지금까지 한 번도 평가를 하지 않은 경우에 발생한다. 즉, 사용자가 평가한 아이템에 대한 정보가 전혀 포함되어 있지 않거나 매우 적기 때문에 이러한 경우 또한 적합한 이웃 사용자 집단을 형성하는데 어려움을 겪게 되고 사용자가 평가하지 않은 아이템에 대한 선호도 예측의 정확성이 감소되게 된다. 본 논문에서는 영화 추천 시스템에서 발생될 수 있는 초기 사용자 문제를 해결하기 위하여 사용자가 평가한 영화와 소셜 네트워크 서비스로부터 추출된 사용자 선호 장르를 활용하여 사용자 군집을 형성하고 이를 활용하는 방법을 제안한다. 소셜 네트워크 서비스로부터 사용자가 선호하는 영화 장르를 추출하기 위해 페이스북 페이지의 '좋아요' 옵션을 이용하며, 이 '좋아요' 정보를 분석하여 사용자의 영화 장르 관심사를 추출한다. 페이스북의 영화 페이지는 각 영화를 위한 페이스북 페이지로 구성되고 있으며, 사용자는 자신의 선호도에 따라서 "좋아요" 옵션을 선택할 수 있다. 사용자의 페이스북 정보는 페이스북 그래프 API를 활용하여 추출되고 이로부터 사용자 선호 영화를 알 수 있게 된다. 시스템에서 활용되는 영화 정보는 인터넷 영화 데이터베이스인 IMDb로부터 획득한다. IMDb는 수많은 영화와 TV 프로그램을 보유하고 있으며, 각 영화에 관련된 배우 정보, 장르 및 부가 정보들을 포함한다. 논문에서는 사용자가 "좋아요" 표시를 한 영화 페이지를 이용하여 IMDb로부터 영화 장르 정보를 가져온다. 그리고 추출된 영화 장르 선호도와 본 시스템에서 제안하는 영화 평가 항목을 이용하여 유사한 이웃 사용자 집단을 구성한 후, 사용자가 평가하지 않은 아이템에 대한 선호도를 예측하고, 높은 예측 값을 갖는 아이템을 사용자에게 추천한다. 본 논문에서 제안한 사용자의 선호 장르 기반의 사용자 군집 기법을 이용한 시스템을 평가하기 위해서 IMDb 데이터 집합을 이용하여 사용자 영화 평가 시스템을 구축하였고 참가자들의 영화 평가 정보를 획득하였다. 페이스북 영화 페이지 정보는 참가자들의 페이스북 계정과 페이스북 그래프 API를 통해 획득하였다. 사용자 영화 평가 시스템을 통해 획득된 사용자 데이터를 제안하는 방법에 적용하였고 추천 성능, 품질 및 초기 사용자 문제를 벤치마크 알고리즘과 비교하여 평가하였다. 실험 평가의 결과 제안하는 방법을 적용한 추천 시스템을 통해 추천의 품질을 10% 향상시킬 수 있었고, 초기 사용자 문제에 대해서 15% 완화시킬 수 있음을 볼 수 있었다.

다양한 다분류 SVM을 적용한 기업채권평가 (Corporate Bond Rating Using Various Multiclass Support Vector Machines)

  • 안현철;김경재
    • Asia pacific journal of information systems
    • /
    • 제19권2호
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.