• Title/Summary/Keyword: Network generation model

Search Result 625, Processing Time 0.028 seconds

An Efficient Model and Algorithm to Allocate Rail Track Capacity Considering Line Plans (노선 계획을 고려한 철도 선로 용량 배분 최적화 모형 및 해법)

  • Park, Bum Hwan;Chung, Kwang Woo
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.6
    • /
    • pp.466-473
    • /
    • 2014
  • Recently, there is has been significant interest in the allocation systems of rail track capacities with considerations of the multiple train operating companies. The system indicates both a well-defined procedure and an algorithmic method to allocate the rail track capacities. Among them, this study considers the algorithmic method to derive the optimal timetable for the trains, which the companies propose together with their arrival and departure times at each station. However, most studies have focused on the adjustment of the departure and arrival times without conflicts, which could result in incompatible allocations with the line plan, which would result in an insufficient number of trains on each line to satisfy the demands. Our study presents a new optimization model and algorithm for the allocation problem in order to reflect the predetermined line plan. Furthermore, we provide the experimental results that were applied to the Korean high-speed railway network including the Suseo lines.

A Methodology for Realty Time-series Generation Using Generative Adversarial Network (적대적 생성망을 이용한 부동산 시계열 데이터 생성 방안)

  • Ryu, Jae-Pil;Hahn, Chang-Hoon;Shin, Hyun-Joon
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.9-17
    • /
    • 2021
  • With the advancement of big data analysis, artificial intelligence, machine learning, etc., data analytics technology has developed to help with optimal decision-making. However, in certain areas, the lack of data restricts the use of these techniques. For example, real estate related data often have a long release cycle because of its recent release or being a non-liquid asset. In order to overcome these limitations, we studied the scalability of the existing time series through the TimeGAN model. A total of 45 time series related to weekly real estate data were collected within the period of 2012 to 2021, and a total of 15 final time series were selected by considering the correlation between the time series. As a result of data expansion through the TimeGAN model for the 15 time series, it was found that the statistical distribution between the real data and the extended data was similar through the PCA and t-SNE visualization algorithms.

Power peaking factor prediction using ANFIS method

  • Ali, Nur Syazwani Mohd;Hamzah, Khaidzir;Idris, Faridah;Basri, Nor Afifah;Sarkawi, Muhammad Syahir;Sazali, Muhammad Arif;Rabir, Hairie;Minhat, Mohamad Sabri;Zainal, Jasman
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.608-616
    • /
    • 2022
  • Power peaking factors (PPF) is an important parameter for safe and efficient reactor operation. There are several methods to calculate the PPF at TRIGA research reactors such as MCNP and TRIGLAV codes. However, these methods are time-consuming and required high specifications of a computer system. To overcome these limitations, artificial intelligence was introduced for parameter prediction. Previous studies applied the neural network method to predict the PPF, but the publications using the ANFIS method are not well developed yet. In this paper, the prediction of PPF using the ANFIS was conducted. Two input variables, control rod position, and neutron flux were collected while the PPF was calculated using TRIGLAV code as the data output. These input-output datasets were used for ANFIS model generation, training, and testing. In this study, four ANFIS model with two types of input space partitioning methods shows good predictive performances with R2 values in the range of 96%-97%, reveals the strong relationship between the predicted and actual PPF values. The RMSE calculated also near zero. From this statistical analysis, it is proven that the ANFIS could predict the PPF accurately and can be used as an alternative method to develop a real-time monitoring system at TRIGA research reactors.

Sustainable Digital Fabrication Communities: Focusing on the Comparison of Fablabs in Korea and Japan (지속가능한 디지털 제작 커뮤니티: 한·일간 팹랩 비교를 중심으로)

  • Kim, Yun-Ho;Lee, Myung-Moo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.44-57
    • /
    • 2022
  • Fablab is a global network of digital fabrication facilities. Fablab is a digital workshop for individual manufacturing. In addition, Fablab is a next-generation digital infrastructure that connects education, training, R&D and production. The Fablab is a facility lab that makes the products you want, and it is a space where users-led products or services are discovered for the community. Furthermore, through various citizen-led projects, it is playing the role of innovation that changes the region and society. In this study, we examine the operating conditions of Fablabs in Korea and Japan (Fablab Seoul, Fablab Busan, Fablab Kamakura and Fablab Kitakagaya). It also explores the business model and sustainable development potential of each fablab. To this end, first, we compare and analyze the use of fablabs in both countries. Second, the purpose of the fablabs of both countries is analyzed. Third, we analyze the business models that the fablabs of both countries are taking for sustainable development through Lean Canvas. Based on the results obtained through case analysis of both countries, we make suggestions for the development of fablabs in Korea.

QoS-Aware Optimal SNN Model Parameter Generation Method in Neuromorphic Environment (뉴로모픽 환경에서 QoS를 고려한 최적의 SNN 모델 파라미터 생성 기법)

  • Seoyeon Kim;Bongjae Kim;Jinman Jung
    • Smart Media Journal
    • /
    • v.12 no.4
    • /
    • pp.19-26
    • /
    • 2023
  • IoT edge services utilizing neuromorphic hardware architectures are suitable for autonomous IoT applications as they perform intelligent processing on the device itself. However, spiking neural networks applied to neuromorphic hardware are difficult for IoT developers to comprehend due to their complex structures and various hyper-parameters. In this paper, we propose a method for generating spiking neural network (SNN) models that satisfy user performance requirements while considering the constraints of neuromorphic hardware. Our proposed method utilizes previously trained models from pre-processed data to find optimal SNN model parameters from profiling data. Comparing our method to a naive search method, both methods satisfy user requirements, but our proposed method shows better performance in terms of runtime. Additionally, even if the constraints of new hardware are not clearly known, the proposed method can provide high scalability by utilizing the profiled data of the hardware.

Exercising The Traditional Four-Step Transportation Model Using Simplified Transport Network of Mandalay City in Myanmar (미얀마 만달레이시의 단순화된 교통망을 이용한 전통적인 4단계 교통 모델에 관한 연구)

  • Wut Yee Lwin;Byoung-Jo Yoon;Sun-Min Lee
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.257-269
    • /
    • 2024
  • Purpose: The purpose of this study is to explain the pivotal role of the travel forecasting process in urban transportation planning. This study emphasizes the use of travel forecasting models to anticipate future traffic. Method: This study examines the methodology used in urban travel demand modeling within transportation planning, specifically focusing on the Urban Transportation Modeling System (UTMS). UTMS is designed to predict various aspects of urban transportation, including quantities, temporal patterns, origin-destination pairs, modal preferences, and optimal routes in metropolitan areas. By analyzing UTMS and its operational framework, this research aims to enhance an understanding of contemporary urban travel demand modeling practices and their implications for transportation planning and urban mobility management. Result: The result of this study provides a nuanced understanding of travel dynamics, emphasizing the influence of variables such as average income, household size, and vehicle ownership on travel patterns. Furthermore, the attraction model highlights specific areas of significance, elucidating the role of retail locations, non-retail areas, and other locales in shaping the observed dynamics of transportation. Conclusion: The study methodically addressed urban travel dynamics in a four-ward area, employing a comprehensive modeling approach involving trip generation, attraction, distribution, modal split, and assignment. The findings, such as the prevalence of motorbikes as the primary mode of transportation and the impact of adjusted traffic patterns on reduced travel times, offer valuable insights for urban planners and policymakers in optimizing transportation networks. These insights can inform strategic decisions to enhance efficiency and sustainability in urban mobility planning.

A Study on Stochastic Wave Propagation Model to Generate Various Uninterrupted Traffic Flows (다양한 연속 교통류 구현을 위한 확률파장전파모형의 개발)

  • Chang, Hyun-Ho;Baek, Seung-Kirl;Park, Jae-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.4 s.75
    • /
    • pp.147-158
    • /
    • 2004
  • A class of SWP(Stochastic Wane Propagation) models microscopically mimics individual vehicles' stochastic behavior and traffic jam propagation with simplified car-following models based on CA(Cellular Automata) theory and macroscopically captures dynamic traffic flow relationships based on statistical physics. SWP model, a program-oriented model using both discrete time-space and integer data structure, can simulate a huge road network with high-speed computing time. However, the model has shortcomings to both the capturing of low speed within a jam microscopically and that of the density and back propagation speed of traffic congestion macroscopically because of the generation of spontaneous jam through unrealistic collision avoidance. In this paper, two additional rules are integrated into the NaSch model. The one is SMR(Stopping Maneuver Rule) to mimic vehicles' stopping process more realistically in the tail of traffic jams. the other is LAR(Low Acceleration Rule) for the explanation of low speed characteristics within traffic jams. Therefore, the CA car-following model with the two rules prevents the lockup condition within a heavily traffic density capturing both the stopping maneuver behavior in the tail of traffic jam and the low acceleration behavior within jam microscopically, and generates more various macroscopic traffic flow mechanism than NaSch model's with the explanation of propagation speed and density of traffic jam.

A Path-Based Traffic Assignment Model for Integrated Mass Transit System (통합 대중교통망에서의 경로기반 통행배정 모형)

  • Shin, Seong-Il;Jung, Hee-Don;Lee, Chang-Ju
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.3
    • /
    • pp.1-11
    • /
    • 2007
  • Seoul's transportation system was changed drastically starting the first of June in two thousand. This policy includes integrated distance-based fare system and public transportation card system called smart card. Especially, as public transportation card data contains individual travel, transfer and using modes information it is possible to catch the characteristics of path-based individuals and mass transit. Thus, public transportation card data can contribute to evaluate the mass transit service in integrated public transportation networks. In addition, public transportation card data are able to help to convert previous researches and analyses with link-based trip assignment models to path-based mass transit service analysis. In this study, an algorithm being suitable for path-based trip assignment models is suggested and proposed algorithm can also contribute to make full use of public transportation card data. For this, column generation algorithm hewn to draw the stable solution is adopted. This paper uses the methodology that is to take local approximate equilibrium from partial network and expand local approximate equilibrium to global equilibrium.

  • PDF

A Proposal of USN-based DER(Decentralized Energy Resources) Management System (USN 기반의 댁내 분산 전력 관리 시스템 제안)

  • Kim, Bo-Min;Kim, Jeong-Young;Bang, Hyun-Jin;Jang, Min-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.871-874
    • /
    • 2010
  • Needs for Smart Grid development are increasing all over the world as a solution to its problem according to depletion of energy resources, climatic and environmental rapidly change and growing demand for electrical power. Especially decentralized power is attracting world's attention. In this mood a new era for a unit scale of decentralized power environment is on its way in building. However there is a problem to have to be solved in the uniformity of power quality because the amount of power generated from renewable energy resources such as wind power and solar light is very sensitive to climate fluctuation. And thus this paper tries to suggest an energy management method on basis of real time monitoring for meteorological data. In the current situation of lacking in USN-based killer application in Smart Grid field, this paper proposes the USN-based DER management system which collects the meteorological data and control power system througout utilizing wireless sensor network technique this business. This communication technique is regarded to be efficient in aspects of installation cost and tits maintenance cost. The proposed EMS model embodies the method for predicting the power generation by monitoring and analyzing the climatic data and controling the efficient power distribution between the renewable energy and the existing power. The ultimate goal of this paper is to provide the technological basis for achieving zero-energy house.

  • PDF

End to End Model and Delay Performance for V2X in 5G (5G에서 V2X를 위한 End to End 모델 및 지연 성능 평가)

  • Bae, Kyoung Yul;Lee, Hong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.107-118
    • /
    • 2016
  • The advent of 5G mobile communications, which is expected in 2020, will provide many services such as Internet of Things (IoT) and vehicle-to-infra/vehicle/nomadic (V2X) communication. There are many requirements to realizing these services: reduced latency, high data rate and reliability, and real-time service. In particular, a high level of reliability and delay sensitivity with an increased data rate are very important for M2M, IoT, and Factory 4.0. Around the world, 5G standardization organizations have considered these services and grouped them to finally derive the technical requirements and service scenarios. The first scenario is broadcast services that use a high data rate for multiple cases of sporting events or emergencies. The second scenario is as support for e-Health, car reliability, etc.; the third scenario is related to VR games with delay sensitivity and real-time techniques. Recently, these groups have been forming agreements on the requirements for such scenarios and the target level. Various techniques are being studied to satisfy such requirements and are being discussed in the context of software-defined networking (SDN) as the next-generation network architecture. SDN is being used to standardize ONF and basically refers to a structure that separates signals for the control plane from the packets for the data plane. One of the best examples for low latency and high reliability is an intelligent traffic system (ITS) using V2X. Because a car passes a small cell of the 5G network very rapidly, the messages to be delivered in the event of an emergency have to be transported in a very short time. This is a typical example requiring high delay sensitivity. 5G has to support a high reliability and delay sensitivity requirements for V2X in the field of traffic control. For these reasons, V2X is a major application of critical delay. V2X (vehicle-to-infra/vehicle/nomadic) represents all types of communication methods applicable to road and vehicles. It refers to a connected or networked vehicle. V2X can be divided into three kinds of communications. First is the communication between a vehicle and infrastructure (vehicle-to-infrastructure; V2I). Second is the communication between a vehicle and another vehicle (vehicle-to-vehicle; V2V). Third is the communication between a vehicle and mobile equipment (vehicle-to-nomadic devices; V2N). This will be added in the future in various fields. Because the SDN structure is under consideration as the next-generation network architecture, the SDN architecture is significant. However, the centralized architecture of SDN can be considered as an unfavorable structure for delay-sensitive services because a centralized architecture is needed to communicate with many nodes and provide processing power. Therefore, in the case of emergency V2X communications, delay-related control functions require a tree supporting structure. For such a scenario, the architecture of the network processing the vehicle information is a major variable affecting delay. Because it is difficult to meet the desired level of delay sensitivity with a typical fully centralized SDN structure, research on the optimal size of an SDN for processing information is needed. This study examined the SDN architecture considering the V2X emergency delay requirements of a 5G network in the worst-case scenario and performed a system-level simulation on the speed of the car, radius, and cell tier to derive a range of cells for information transfer in SDN network. In the simulation, because 5G provides a sufficiently high data rate, the information for neighboring vehicle support to the car was assumed to be without errors. Furthermore, the 5G small cell was assumed to have a cell radius of 50-100 m, and the maximum speed of the vehicle was considered to be 30-200 km/h in order to examine the network architecture to minimize the delay.