• Title/Summary/Keyword: Network fault recovery

Search Result 72, Processing Time 0.026 seconds

LAN-Based Protective Relaying for Interconnect Protection of Dispersed Generators (LAN을 이용한 분산전원 연계 계통의 보호)

  • Jyung, Tae-Young;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.491-497
    • /
    • 2007
  • As dispersed generators was driven in condition interconnecting with utility, it could cause a variety of new effects to the original distribution system that was running as considered only the one-way power flow. Therefore, the protection devices that is builted in distribution system should be designed to be able to operate with disposing of not only a fault of the generator, but also utility condition. Especially, the fault of the feeder interconnected with Dispersed Generator can cause the islanding phenomenon of open DG(Dispersed Generators). This phenomenon has many problems such as a machinery damage, electricity qualify degradation and a difficulty of the system recovery. In the fault therefore, we must separate Dispersed Generator from the system quickly. In this paper, for the fault classification of the interconnected DG and the outside feeder we judge the fault of the interconnected DG and the outside feeder in HMI through data provided by IED(Intelligent Electronic Device) on the network and decide whether it operates or not by sending the result to each relay.

Design and Implementation of Fault-tolerant Communication Middleware for a High-reliable Launch Control System (고신뢰성 발사통제시스템을 위한 고장허용 통신 미들웨어 설계 및 구현)

  • Song, Dae-Ki;Jang, Bu-Cheol;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.8
    • /
    • pp.37-46
    • /
    • 2008
  • Launch control system controls the sequence for launching missile in weapon systems. This system have to generate the engagement plan, input information and launch the missile in timeliness requirement. Such a system may fail to operate correctly either due to errors in hardware and software or due to violation of timing constraints. We presented fault-tolerant ethernet for embedded real-time system like launch control system. This approach is designed to handle network faults using dual commercial-off-the-shelf(COTS) network devices. To support fault-tolerant ethernet each node is composed dual channel ethernet and designed the communication middleware for network fault detect and recovery. Especially for time-critical system, the middleware is being developed to achieve that no point of network failure shall take down or cause loss of communication to network nodes.

Fault Tolerance for IEEE 1588 Based on Network Bonding (네트워크 본딩 기술을 기반한 IEEE 1588의 고장 허용 기술 연구)

  • Altaha, Mustafa;Rhee, Jong Myung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.331-339
    • /
    • 2018
  • The IEEE 1588, commonly known as a precision time protocol (PTP), is a standard for precise clock synchronization that maintains networked measurements and control systems. The best master clock (BMC) algorithm is currently used to establish the master-slave hierarchy for PTP. The BMC allows a slave clock to automatically take over the duties of the master when the slave is disconnected due to a link failure and loses its synchronization; the slave clock depends on a timer to compensate for the failure of the master. However, the BMC algorithm does not provide a fast recovery mechanism in the case of a master failure. In this paper, we propose a technique that combines the IEEE 1588 with network bonding to provide a faster recovery mechanism in the case of a master failure. This technique is implemented by utilizing a pre-existing library PTP daemon (Ptpd) in Linux system, with a specific profile of the IEEE 1588 and it's controlled through bonding modes. Network bonding is a process of combining or joining two or more network interfaces together into a single interface. Network bonding offers performance improvements and redundancy. If one link fails, the other link will work immediately. It can be used in situations where fault tolerance, redundancy, or load balancing networks are needed. The results show combining IEEE 1588 with network bonding enables an incredible shorter recovery time than simply just relying on the IEEE 1588 recovery method alone.

Extension of ReInForM Protocol for (m,k)-firm Real-time Streams in Wireless Sensor Networks

  • Li, Bijun;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.231-236
    • /
    • 2012
  • For real-time wireless sensor network applications, it is essential to provide different levels of quality of service (QoS) such as reliability, low latency, and fault-tolerant traffic control. To meet these requirements, an (m,k)-firm based real-time routing protocol has been proposed in our prior work, including a novel local transmission status indicator called local DBP (L_DBP). In this paper, a fault recovery scheme for (m,k)-firm real-time streams is proposed to improve the performance of our prior work, by contributing a delay-aware forwarding candidates selection algorithm for providing restricted redundancy of packets on multipath with bounded delay in case of transmission failure. Each node can utilize the evaluated stream DBP (G_DBP) and L_DBP values as well as the deadline information of packets to dynamically define the forwarding candidate set. Simulation results show that for real-time service, it is possible to achieve both reliability and timeliness in the fault recovery process, which consequently avoids dynamic failure and guarantees meeting the end-to-end QoS requirement.

Construction of an Agent-based Fault-Tolerant Object Group Model (에이전트 기반의 고장허용 객체그룹 모델 구축)

  • Kang, Myung-Seok;Kim, Hag-Bae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1B
    • /
    • pp.74-85
    • /
    • 2009
  • We propose an Agent-based Fault Tolerant Object Group model based on the agent technology and FTOG model with replication mechanism for effective object management and fault recovery. We define the five kind of agents - internal processing agent, registration agent, state handling agent, user interface agent, and service agent - that extend the functions of the FTOG model. The roles of the agents in the proposed model are to reduce the remote interactions between distributed objects and provide more effective service execution. To verify the effectiveness of the proposed model, we implemented the Intelligent Home Network Simulator (IHNS) which virtually provides general home networking services. Through the simulations, it is validated that the proposed model decreases the interactions of the object components and supports the effective fault recovery, while providing more stable and reliable services.

Web Server Application in The Operation of Chip Mounter (Chip Mounter 운영에서 Web Server 활용)

  • 임선종;김선호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.172-175
    • /
    • 2003
  • The enterprise find a solution to the problems such as a reduction of manufacturing period, accurate analysis for customer demand, improvement for customer service and rise of manufacture accomplishment. Internet is a good solution to such problems. Internet offers WWW(World Wide Web), remote control, file transfer and e-mail service. Among the services, WWW takes large portion because of convenient GUI, easy information search and unlimited information registration. Remote Monitoring Server(RMS) system that uses network service is constructed for chip mounter. Hardware base consists of RMS, chip mounter and C/S(Customer Service) server. Software includes DBMS and various modules in server home page. This provide product number, bad product number, trouble code, content and countermeasure in real-time information module, user information in setup module, detailed error information in fault diagnosis module, fault history in fault history module and customer information in customer service management module.

  • PDF

Implementation of High-Reliable MVB Network for Safety System of Nuclear Power Plant (원자력발전소 안전계통용 고신뢰성 MVB 네트워크 구현)

  • Sul, Jae-Yoon;Kim, Ki-Chang;Kim, Yoo-Sung;Park, Jae-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.6
    • /
    • pp.859-864
    • /
    • 2012
  • The computer network plays an important role in modern digital controllers within a safety system of a nuclear power plant. For the reliable and realtime data communication between controllers, this paper proposes a modified high-reliable MVB(multi-function vehicle bus) as a main control network for a safety system of a nuclear power plant. The proposed network supports the state-based communication in order to ensure the deterministic communication latency, and very fast network recovery when the bus master fails compare to the standard MVB. This paper also shows the implementation results using a FPGA-based testbed.

Fault Recover Algorithm for Cluster Head Node and Error Correcting Code in Wireless Sensor Network (무선센서 네트워크의 클러스터 헤드노드 고장 복구 알고리즘 및 오류 정정코드)

  • Lee, Joong-Ho
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.449-453
    • /
    • 2016
  • Failures would occur because of the hostile nature environment in Wireless Sensor Networks (WSNs) which is deployed randomly. Therefore, considering faults in WSNs is essential when we design WSN. This paper classified fault model in the sensor node. Especially, this paper proposed new error correcting code scheme and fault recovery algorithm in the CH(Cluster Head) node. For the range of the small size information (<16), the parity size of the proposed code scheme has the same parity length compared with the Hamming code, and it has a benefit to generate code word very simple way. This is very essential to maintain reliability in WSN with increase power efficiency.

(A Study on the Control Mechanism for Network Survivability in OVPN over IP/GMPLS over DWDM) (DWDM기반의 OVPN에서 네트워크 생존성을 위한 제어 메커니즘 연구)

  • Cho Kwang-Hyun;Jeong Chang-Hyun;Hong Kyung-Dong;Kim Sung-Un
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.9 s.339
    • /
    • pp.85-96
    • /
    • 2005
  • A ' Virtual Private Network (YPN) over Internet' has the benefits of being cost-effective and flexible. However, given the increasing demands for high bandwidth Internet and for reliable services in a 'VPN over Intemet,' an IP/GMPLS over DWDM backbone network is regarded as a very favorable approach for the future 'Optical VPN (OVPN)' due to the benefits of transparency and high data rate. Nevertheless, OVPN still has survivability issues such that a temporary fault can lose a large amount of data in seconds, moreover unauthorized physical attack can also be made on purpose to eavesdrop the network through physical components. Also, logical attacks can manipulate or stop the operation of GMPLS control messages and menace the network survivability of OVPN. Thus, network survivability in OVPN (i.e. fault/attack tolerant recovery mechanism considering physical structure and optical components, and secured transmission of GMPLS control messages) is rising as a critical issue. In this Paper, we propose a new path establishment scheme under shared risk link group (SRLG) constraint for physical network survivability. And we also suggest a new logical survivability management mechanism by extending resource reservation protocol-traffic engineering extension (RSVP-TE+) and link management protocol (LMP). Finally, according to the results of our simulation, the proposed algorithms are revealed more effective in the view point of survivability.

Fault-Tolerant Algorithm using Multi-Connectivity of Communication Networks (통신망의 다중연결성을 이용한 결함허용 알고리즘)

  • Moon, Yun-Ho;Kim, Byung-Ki
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.1
    • /
    • pp.53-60
    • /
    • 2000
  • The purpose of this paper is to propose new recovery algorithm for case of a system element raises communication obstacle due to faults in networks, Also we are simulate the algorithm using adjacency matrix. We recover one faulty node per each excution of proposed algorithm so that we can be reconstruct the faulty system gradually to communicatable network. For that, this paper propose a new recovery algorithm named MATRECO which connect the recovery process is simulated by use of adjacency matrix.

  • PDF