• Title/Summary/Keyword: Network energy

Search Result 3,748, Processing Time 0.037 seconds

A CMOS Wideband RF Energy Harvester Employing Tunable Impedance Matching Network for Video Surveillance Disposable IoT Applications (가변 임피던스 매칭 네트워크를 이용한 영상 감시 Disposable IoT용 광대역 CMOS RF 에너지 하베스터)

  • Lee, Dong-gu;Lee, Duehee;Kwon, Kuduck
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.2
    • /
    • pp.304-309
    • /
    • 2019
  • This paper presents a CMOS RF-to-DC converter for video surveillance disposable IoT applications. It widely harvests RF energy of 3G/4G cellular low-band frequency range by employing a tunable impedance matching network. The proposed converter consists of the differential-drive cross-coupled rectifier and the matching network with a 4-bit capacitor array. The proposed converter is designed using 130-nm standard CMOS process. The designed energy harvester can rectify the RF signals from 700 MHz to 900 MHz. It has a peak RF-to-DC conversion efficiency of 72.25%, 64.97%, and 66.28% at 700 MHz, 800 MHz, and 900 MHz with a load resistance of 10kΩ, respectively.

Energy Aware Landmark Election and Routing Protocol for Grid-based Wireless Sensor Network (그리드 기반 무선센서네트워크에서 에너지 인지형 Landmark 선정 및 라우팅 프로토콜)

  • Sanwar Hosen, A.S.M.;Cho, Gi-Hwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.177-180
    • /
    • 2011
  • In practice, it is well known that geographical and/or location based routing is highly effective for wireless sensor network. Here, electing some landmarks on the network and forwarding data based on the landmark is one of the good approaches for a vast sensing field with holes. In the most previous works, landmarks are elected without considering the residual energy on each sensor. In this paper, we propose an Energy aware Landmark Election and Routing (ELER) protocol to establish a stable routing paths and reduce the total power consumption. The proposed protocol makes use of each sensor's energy level on electing the landmarks, which would be utilized to route a packet towards the target region using greedy forwarding method. Our simulation results illustrate that the proposed scheme can significantly reduce the power dissipation and effectively lengthen the lifetime of the network.

Information System of Smart u-LED Lighting Energy based on Zigbee Mesh Network (지그비 메쉬 망 기반 스마트 u-LED 전력제어 시스템)

  • Kim, Sam-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.77-83
    • /
    • 2013
  • Nowadays, the limitation of Lighting control and management skills is the excessive cost of equipments, the operational difficulties and wasting energy. To solve this problem is in need of communication and management S/W that is worked out complexly well as a information system of smart lighting energy, which is loaded wireless network facility. This paper made a study od the energy saving technology through energy monitoring and we developed LEIS(Lighting Energy Information Sysem) to converge this one. LEIS is monitoring and control lighting energy data that is collelcted from sensors by Zigbee mesh network and shows lighting use information by visualization to users. It is consists of lighting energy information data base based on LEM(Lighting Energy Metering) information and LEIS Web application, provide function scenario to manage energy optimization through LEIS.

Traffic Load Analysis of Data Communication Networks for KNICS

  • Lee, C.K.;Lee, D.Y.;Oh, I.S.;Hwang, I.K.;Kim, D.H.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2004.10a
    • /
    • pp.595-596
    • /
    • 2004
  • Based on the systems and devices which are being developed in the KNICS project, the data communication network (DCN) which is an essential element for the interfaces among the I&C systems. is designed. The traffic load for each network is calculated at the expected maximum traffic condition. The result shows that the utilizations of all networks satisfy the design requirements.

  • PDF

Energy Efficient Two-Tier Routing Protocol for Wireless Sensor Networks (센서 네트워크에서 에너지 효율성을 고려한 two-tier 라우팅 프로토콜)

  • Ahn Eun-Chul;Lee Sung-Hyup;Cho You-Ze
    • The KIPS Transactions:PartC
    • /
    • v.13C no.1 s.104
    • /
    • pp.103-112
    • /
    • 2006
  • Since sensor node has a limited energy supply in a wireless sensor network, it is very important to maximize the network lifetime through energy-efficient routing. Thus, many routing protocols have been developed for wireless sensor networks and can be classified into flat and hierarchical routing protocols. Recent researches focus on hierarchical routing scheme and LEACH is a representative hierarchical routing protocol. In this paper, we investigated the problems of the LEACH and proposed a novel energy efficient routing scheme, called ENTER(ENergy efficient Two-tiEr Routing protocol), to resolve the problem. ENTER reduces an energy consumption and increases a network lifetime by organizing clusters by the same distributed algerian as in the LEACH and establishing paths among cluster-heads to transmit the aggregated data to the sink node. We compared the performance of the ENTER with the LEACH through simulation and showed that the ENTER could enhance the network lifetime by utilizing the resources more efficiently.

Transition Decision Algorithm for Energy Saving in OBS Network with LPI (저전력 대기를 사용하는 OBS 망에서 에너지 절감을 위한 상태 천이 결정 알고리즘)

  • Kang, Dong-Ki;Yang, Won-Hyuk;Lee, Ki-Beom;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5B
    • /
    • pp.317-326
    • /
    • 2012
  • Recently, many researchers have studied to solve the energy consumption of network equipments since the interest of Green IT has been increased. In this paper, we apply Low Power Idle (LPI) to OBS network to reduce energy consumption of network devices. Many previous researches have focused on maximizing the sleep time of network equipments to increase the energy saving efficiency of LPI. But transition overhead caused by LPI might not only depreciate the performance of energy saving but also increase packet delay. In this paper, Transition Decision (TD) algorithm is proposed to improve energy saving efficiency by reducing the number of unnecessary transition and guarantee the required QoS such as packet delay. To evaluate the performance of proposed algorithm, we model OBS edge router with LPI by OPNET and analyze the performance of the proposed algorithm in views of energy saving, transition count and average packet delay.

An Inter-Session Opportunistic Network Coding-aware Multipath Routing Protocol (세션간 네트워크 코딩 기회를 인식하는 다중 경로 라우팅 프로토콜)

  • Choi, Tae-Jong;Kang, Kyung-Ran;Cho, Young-Jong;Bang, June-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7B
    • /
    • pp.536-549
    • /
    • 2012
  • An ad hoc network consists of nodes with limited energy. Therefore, the data transmission can fail abruptly due to lack of energy of transmitting node. A previous work PAMP proposed to build multiple low-energy paths to support stable packet delivery exploiting the nodes with low energy. It has energy-reservation scheme and multi-path selection scheme for stationary wireless ad hoc networks. In this paper, we propose an extended version of PAMP by incorporating network coding opportunity in path selection process. The simulation results show that our proposed scheme shows better packet delivery ratio and lower energy consumption compared with PAMP and a legacy energy-aware multipath routing protocol REAR.

Link Cost based Routing Protocol for Improving Energy Efficiency in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율 향상을 위한 링크 비용 기반 라우팅 프로토콜)

  • Lee, Dae-hee;Cho, Kyoung-woo;Kang, Chul-gyu;Oh, Chang-heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.574-580
    • /
    • 2019
  • Conventional energy efficient routing protocols apply high weight to energy among routing metrics, causing nodes to concentrate on energy efficient paths and quickly exhaust energy on those paths. The unbalanced energy consumption of these wireless sensor networks causes network division and malfunction, and reduces network lifetime. Therefore, in this paper, it proposes a link cost based routing protocol to solve the unbalanced energy consumption of wireless sensor networks. The proposed routing protocol calculates the link cost by applying the weight of the routing metric differently according to the network problem situation and selects the path with the lowest value. As a result of the performance analysis, it confirmed that the proposed routing protocol has 22% longer network life, 2% energy consumption standard deviation and 2% higher data reception rate than the existing AODV protocol.

Drone Deployment Using Coverage-and-Energy-Oriented Technique in Drone-Based Wireless Sensor Network (드론 기반 무선 센서 네트워크에서의 커버리지와 에너지를 고려한 드론 배치)

  • Kim, Tae-Rim;Song, Jong-Gyu;Im, Hyun-Jae;Kim, Bum-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.15-22
    • /
    • 2019
  • Awireless sensor network utilizes small sensors with a low cost and low power being deployed over a wide area. They monitor the surrounding environment and gather the associated information to transmit it to a base station via multi-hop transmission. Most of the research has mainly focused on static sensors that are located in a fixed position. Unlike a wireless sensor network based on static sensors, we can exploit drone-based technologies for more efficient wireless networks in terms of coverage and energy. In this paper, we introduce a transmission power model and a video encoding power model to design the network environment. We also explain a priority mapping scheme, and deploy drones oriented for network coverage and energy consumption. Through our simulations, this research shows coverage and energy improvements in adrone-based wireless sensor network with fewer sensors, compared to astatic sensor-based wireless sensor network. Concretely, coverage increases by 30% for thedrone-based wireless sensor network with the same number of sensors. Moreover, we save an average of 25% with respect to the total energy consumption of the network while maintaining the coverage required.

A Study on an AODV Routing Protocol with Energy-Efficiency (에너지 효율을 고려한 AODV 라우팅 프로토콜에 관한 연구)

  • Hwang, Tae Hyun;Kim, Doo Yong;Kim, Kiwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.17-22
    • /
    • 2015
  • In recent years, wireless sensor networks have become an important part of data communications. Sensors provide information about the required measurements or control states over wireless networks. The energy efficient routing protocol of wireless sensor networks is the key issue for network lifetimes. The routing protocol must ensure that connectivity in a network is remained for a long period of time and the energy status of the sensor in the entire network must be in the same level in order not to leave the network with a wide difference in the energy consumptions of the sensors. In this paper we propose a new routing protocol based on AODV protocol that considers the energy efficiency when the protocol determines the routing paths, which is called AODV-EE. The proposed method prevents an imbalance of power consumption in sensors of wireless networks. From the simulation results it is shown that the proposed algorithm can be effectively used in collecting and monitoring data without concerning about the disconnection of the networks.