• Title/Summary/Keyword: Network cache

Search Result 273, Processing Time 0.034 seconds

Enhancing Location Privacy through P2P Network and Caching in Anonymizer

  • Liu, Peiqian;Xie, Shangchen;Shen, Zihao;Wang, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1653-1670
    • /
    • 2022
  • The fear that location privacy may be compromised greatly hinders the development of location-based service. Accordingly, some schemes based on the distributed architecture in peer-to-peer network for location privacy protection are proposed. Most of them assume that mobile terminals are mutually trusted, but this does not conform to realistic scenes, and they cannot make requirements for the level of location privacy protection. Therefore, this paper proposes a scheme for location attribute-based security authentication and private sharing data group, so that they trust each other in peer-to-peer network and the trusted but curious mobile terminal cannot access the initiator's query request. A new identifier is designed to allow mobile terminals to customize the protection strength. In addition, the caching mechanism is introduced considering the cache capacity, and a cache replacement policy based on deep reinforcement learning is proposed to reduce communications with location-based service server for achieving location privacy protection. Experiments show the effectiveness and efficiency of the proposed scheme.

A Cache-Aware Request Dispatching on the Storage Area Network based Shared File System (SAN 기반 공유파일 시스템을 사용한 원 서버에서의 효율적인 웹 분배 방식에 대한 연구)

  • Ahn, Chul-Woo;Baik, Kwang-Ho;Hwang, Joo-Young;Kim, Gyeong-Ho;Lee, Chul;Park, Kyu-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10c
    • /
    • pp.4-6
    • /
    • 2001
  • 본 논문에서는 SAN(Storage Area Network) 기반의 공유파일시스템인 Asphodel 파일 시스템을 이용하여 를러스터 웹 서버를 구성하였다. 그리고 Asphodel 공유 파일 시스템이 가지는 락(lock) 서버를 이용하여 효율적인 웹 분배 정책인 CARD(Cache-Aware Request Dispatch)를 제안하고 이를 설계 구현하였다. 그 결과 후위 서버의 메모리 캐쉬의 적중률을 높임으로써 보통의 분배 정책인 라운드로빈(Round-Robin) 방식에 비해 웹 서버의 throughput과 latency에서의 성능 향상을 보였다.

  • PDF

5G Network Communication, Caching, and Computing Algorithms Based on the Two-Tier Game Model

  • Kim, Sungwook
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.61-71
    • /
    • 2018
  • In this study, we developed hybrid control algorithms in smart base stations (SBSs) along with devised communication, caching, and computing techniques. In the proposed scheme, SBSs are equipped with computing power and data storage to collectively offload the computation from mobile user equipment and to cache the data from clouds. To combine in a refined manner the communication, caching, and computing algorithms, game theory is adopted to characterize competitive and cooperative interactions. The main contribution of our proposed scheme is to illuminate the ultimate synergy behind a fully integrated approach, while providing excellent adaptability and flexibility to satisfy the different performance requirements. Simulation results demonstrate that the proposed approach can outperform existing schemes by approximately 5% to 15% in terms of bandwidth utilization, access delay, and system throughput.

A New Route Optimization Scheme for Network Mobility: Combining ORC Protocol with RRH and Using Quota Mechanism

  • Kong, Ruoshan;Feng, Jing;Gao, Ren;Zhou, Huaibei
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.91-103
    • /
    • 2012
  • Network mobility (NEMO) based on mobile IP version 6 has been proposed for networks that move as a whole. Route optimization is one of the most important topics in the field of NEMO. The current NEMO basic support protocol defines only the basic working mode for NEMO, and the route optimization problem is not mentioned. Some optimization schemes have been proposed in recent years, but they have limitations. A new NEMO route optimization scheme-involving a combination of the optimized route cache protocol (ORC) and reverse routing header (RRH) and the use of a quota mechanism for optimized sessions (OwR)-is proposed. This scheme focuses on balanced performance in different aspects. It combines the ORC and RRH schemes, and some improvements are made in the session selection mechanism to avoid blindness during route optimization. Simulation results for OwR show great similarity with those for ORC and RRH. Generally speaking, the OwR's performance is at least as good as that of the RRH, and besides, the OwR scheme is capable of setting up optimal routing for a certain number of sessions, so the performance can be improved and the cost of optimal routing in nested NEMO can be decreased.

Performance Improvement of the Payload Signature based Traffic Classification System Using Application Traffic Locality (응용 트래픽의 지역성을 이용한 페이로드 시그니쳐 기반 트래픽 분석 시스템의 성능 향상)

  • Park, Jun-Sang;Yoon, Sung-Ho;Kim, Myung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.7
    • /
    • pp.519-525
    • /
    • 2013
  • The traffic classification is a preliminary and essential step for stable network service provision and efficient network resource management. However, the payload signature-based method has a significant drawback in high-speed network environment that the processing speed is much slower than other method such as header-based and statistical methods. In this paper, We propose the server IP, Port cache-based traffic classification method using application traffic locality to improve the processing speed of traffic classification. The suggested method achieved about 10 folds improvement in processing speed and 10% improvement in completeness over the payload-based classification system.

Improvement of Handoff-state and QOS in Wireless Environment

  • Jeong, You-Sun;Choe, U-Gin
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • In this paper, we propose for improving QoS in wireless micro cellular network using Cellular-IP/PRC(Paging Route Cache) with Paging Cache and Route Cache in Cellular-IP and propose for performance of realtime and non-real time handoff service using Handoff state machine Paging Route Cache. Although the Cellular-IP/PRC technology is devised for mobile internet communication, it bas its vulnerability in frequent handoff environment. On the other hand, Cellular IP combines the capability of cellular networks to provide high performance handoff and efficient location management of active and idle mobile users with the inherent flexibility, robustness and scalability found in IP networks. Also Cellular-IP/PRC use semi-soft handoff. During semi-soft hand off a mobile host may be in contact with either of the old and new base stations and receive packets from them. Packets intended to the mobile node are sent to both base stations and buffered, so when the mobile host eventually moves to the new location it can continue to receive packets without interruption. It should be suitable for realtime service such as multimedia traffic. But, much waste of resource will occur in this method, especially for non-real time services such as FTP and E-mail. Therefore, a new algorithm that performs different handoff according to characteristic of each traffic by use of reserved field in IP packet is proposed in this thesis. This hand off state machine using differentiated handoff improves quality of services in Cellular-IP/PRC. Suggested algorithm shows better performance than existing technology in wireless mobile internet communication environment. Matlab simulation results are improving QoS, show call drop and call blocking provided to Paging Router Cache during handoff state machine in Cellular-IP/PRC.

Game Theoretic Cache Allocation Scheme in Wireless Networks (게임이론 기반 무선 통신에서의 캐시 할당 기법)

  • Le, Tra Huong Thi;Kim, Do Hyeon;Hong, Choong Seon
    • Journal of KIISE
    • /
    • v.44 no.8
    • /
    • pp.854-859
    • /
    • 2017
  • Caching popular videos in the storage of base stations is an efficient method to reduce the transmission latency. This paper proposes an incentive proactive cache mechanism in the wireless network to motivate the content providers (CPs) to participate in the caching procedure. The system consists of one/many Infrastructure Provider (InP) and many CPs. The InP aims to define the price it charges the CPs to maximize its revenue while the CPs compete to determine the number of files they cache at the InP's base stations (BSs). We conceive this system within the framework of Stackelberg game where InP is considered as the leader and CPs are the followers. By using backward induction, we show closed form of the amount of cache space that each CP renting on each base station and then solve the optimization problem to calculate the price that InP leases each CP. This is different from the existing works in that we consider the non-uniform pricing scheme. The numerical results show that InP's profit in the proposed scheme is higher than in the uniform pricing.

An Adaptive Cache Replacement Policy for Web Proxy Servers (웹 프락시 서버를 위한 적응형 캐시 교체 정책)

  • Choi, Seung-Lak;Kim, Mi-Young;Park, Chang-Sup;Cho, Dae-Hyun;Lee, Yoon-Joon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.6
    • /
    • pp.346-353
    • /
    • 2002
  • The explosive increase of World Wide Web usage has incurred significant amount of network traffic and server load. To overcome these problems, web proxy caching replicates frequently requested documents in the web proxy closer to the users. Cache utilization depends on the replacement policy which tries to store frequently requested documents in near future. Temporal locality and Zipf frequency distribution, which are commonly observed in web proxy workloads, are considered as the important properties to predict the popularity of documents. In this paper, we propose a novel cache replacement policy, called Adaptive LFU (ALFU), which incorporates 1) Zipf frequency distribution by utilizing LFU and 2) temporal locality adaptively by measuring the amount of the popularity reduction of documents as time passed efficiently. We evaluate the performance of ALFU by comparing it to other policies via trace-driven simulation. Experimental results show that ALFU outperforms other policies.

Authenticated Handoff with Low Latency and Traffic Management in WLAN (무선랜에서 낮은 지연 특성을 가지는 인증유지 핸드오프 기법과 트래픽 관리 기법)

  • Choi Jae-woo;Nyang Dae-hun;Kang Jeon-il
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.2
    • /
    • pp.81-94
    • /
    • 2005
  • Recently, wireless LAN circumstance is being widely deployed in Public spots. Many People use Portable equipments such as PDA and laptop computer for multimedia applications, and also demand of mobility support is increasing. However, handoff latency is inevitably occurred between both APs when clients move from one AP to another. To reduce handoff latency. in this paper, we suggest WFH(Weighted Frequent Handoff) using effective data structure. WFH improves cache hit ratio using a new cache replacement algorithm considering the movement pattern of users. It also reduces unessential duplicate traffics. Our algorithm uses FHR(Frequent Handoff Region) that can change pre-authentication lesion according to QoS based user level, movement Pattern and Neighbor Graph that dynamically captures network movement topology.

T-Cache: a Fast Cache Manager for Pipeline Time-Series Data (T-Cache: 시계열 배관 데이타를 위한 고성능 캐시 관리자)

  • Shin, Je-Yong;Lee, Jin-Soo;Kim, Won-Sik;Kim, Seon-Hyo;Yoon, Min-A;Han, Wook-Shin;Jung, Soon-Ki;Park, Se-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.5
    • /
    • pp.293-299
    • /
    • 2007
  • Intelligent pipeline inspection gauges (PIGs) are inspection vehicles that move along within a (gas or oil) pipeline and acquire signals (also called sensor data) from their surrounding rings of sensors. By analyzing the signals captured in intelligent PIGs, we can detect pipeline defects, such as holes and curvatures and other potential causes of gas explosions. There are two major data access patterns apparent when an analyzer accesses the pipeline signal data. The first is a sequential pattern where an analyst reads the sensor data one time only in a sequential fashion. The second is the repetitive pattern where an analyzer repeatedly reads the signal data within a fixed range; this is the dominant pattern in analyzing the signal data. The existing PIG software reads signal data directly from the server at every user#s request, requiring network transfer and disk access cost. It works well only for the sequential pattern, but not for the more dominant repetitive pattern. This problem becomes very serious in a client/server environment where several analysts analyze the signal data concurrently. To tackle this problem, we devise a fast in-memory cache manager, called T-Cache, by considering pipeline sensor data as multiple time-series data and by efficiently caching the time-series data at T-Cache. To the best of the authors# knowledge, this is the first research on caching pipeline signals on the client-side. We propose a new concept of the signal cache line as a caching unit, which is a set of time-series signal data for a fixed distance. We also provide the various data structures including smart cursors and algorithms used in T-Cache. Experimental results show that T-Cache performs much better for the repetitive pattern in terms of disk I/Os and the elapsed time. Even with the sequential pattern, T-Cache shows almost the same performance as a system that does not use any caching, indicating the caching overhead in T-Cache is negligible.