Ibrahim Alrashide;Hussain Alkhalifah;Abdul-Aziz Al-Momen;Ibrahim Alali;Ghazy Alshaikh;Atta-ur Rahman;Ashraf Saadeldeen;Khalid Aloup
International Journal of Computer Science & Network Security
/
제23권12호
/
pp.225-234
/
2023
In this era of information and communication technology (ICT), tremendous improvements have been witnessed in our daily lives. The impact of these technologies is subjective and negative or positive. For instance, ICT has brought a lot of ease and versatility in our lifestyles, on the other hand, its excessive use brings around issues related to physical and mental health etc. In this study, we are bridging these both aspects by proposing the idea of AI based mental healthcare (AIMS). In this regard, we aim to provide a platform where the patient can register to the system and take consultancy by providing their assessment by means of a chatbot. The chatbot will send the gathered information to the machine learning block. The machine learning model is already trained and predicts whether the patient needs a treatment by classifying him/her based on the assessment. This information is provided to the mental health practitioner (doctor, psychologist, psychiatrist, or therapist) as clinical decision support. Eventually, the practitioner will provide his/her suggestions to the patient via the proposed system. Additionally, the proposed system prioritizes care, support, privacy, and patient autonomy, all while using a friendly chatbot interface. By using technology like natural language processing and machine learning, the system can predict a patient's condition and recommend the right professional for further help, including in-person appointments if necessary. This not only raises awareness about mental health but also makes it easier for patients to start therapy.
International Journal of Computer Science & Network Security
/
제22권12호
/
pp.132-138
/
2022
Due to the impacts of the current pandemic COVID-19 and the continuation of studying online. There is an urgent need for an effective and efficient education platform to help with the continuity of studying online. Therefore, the question bank system (QB) is introduced. The QB system is designed as a website to create a single platform used by faculty members in universities to generate questions and store them in a bank of questions. In addition to allowing them to add two types of questions, to help the lecturer create exams and present the results of the students to them. For the implementation, two languages were combined which are PHP and Python to generate questions by using Artificial Intelligence (AI). These questions are stored in a single database, and then these questions could be viewed and included in exams smoothly and without complexity. This paper aims to help the faculty members to reduce time and efforts by using the Question Bank System by using AI and Natural Language Processing (NLP) to extract and generate questions from given text. In addition to the tools used to create this function such as NLTK and TextBlob.
Electrocardiogram (ECG) classification has become an essential task of modern day wearable devices, and can be used to detect cardiovascular diseases. State-of-the-art Artificial Intelligence (AI)-based ECG classifiers have been designed using various artificial neural networks (ANNs). Despite their high accuracy, ANNs require significant computational resources and power. Herein, three different ANNs have been compared: multilayer perceptron (MLP), convolutional neural network (CNN), and spiking neural network (SNN) only for the ECG classification. The ANN model has been developed in Python and Theano, trained on a central processing unit (CPU) platform, and deployed on a PYNQ-Z2 FPGA board to validate the model using a Jupyter notebook. Meanwhile, the hardware accelerator is designed with Overlay, which is a hardware library on PYNQ. For classification, the MIT-BIH dataset obtained from the Physionet library is used. The resulting ANN system can accurately classify four ECG types: normal, atrial premature contraction, left bundle branch block, and premature ventricular contraction. The performance of the ECG classifier models is evaluated based on accuracy and power. Among the three AI algorithms, the SNN requires the lowest power consumption of 0.226 W on-chip, followed by MLP (1.677 W), and CNN (2.266 W). However, the highest accuracy is achieved by the CNN (95%), followed by MLP (76%) and SNN (90%).
일반적으로 최적화문제는 간단하게 해결하기 어렵다. 그 이유는 주어진 문제가 단순하면 바로 해결되지만, 복잡할수록 그 경우의 수는 방대하기 때문이다. 본 연구는 인공신경망 최적화에 대한 연구이다. 여기에서 우리가 다루고 있는 것은, 인공신경망을 구축하기 위한 완화법으로써, 최적화하는 방법이다. 주요 논제로는, 신경망 네트워크 전체의 안정성과 불안정성, 경비 절감, 에너지 절감과 같은 비결정적인 문제를 다루고 있다. 이를 위하여, 우리는 연상기억 모델 즉, 국소적 최소인 기억정보가 가짜인 정보를 선택하지 않는 방법을 제시한다. 그리고, 시물레이티드 어닐링법으로써, 이것은 가급적 낮은값을 가지고 있는 그 방향을 예측하고 그 이전의 낮은값과 결합해 나가서 더 낮은값으로 반복 수정해 나가는 방법이다. 그리고, 비선형 계획문제는, 방대한 조합상태의 수를 목적함수 합의 최소화를 위하여 적절한 최소하강법을 적용하여 입출력을 확인하여 수정해 나가는 방법이다. 결국 본 연구는 최적화문제를 해결하기 위한 이론적인 접근 방법으로써 완화법으로서의 접근가능한 유용한 방법을 제시하였다. 따라서, 본연구는 새롭게 인공신경망을 구축할 때, 효율적으로 적용 할 수 있는 좋은 제안이 될 것으로 생각한다.
스마트 헬스케어는 ICT 분야와 의료서비스 분야가 융 복합 된 분야로 다양한 분야에서 학제 간 융 복합 연구가 활발히 이루어지고 있다. 본 연구는 토픽모델링(Topic Modeling)과 에고 네트워크 분석(Ego Network Analysis)을 활용하여 스마트 헬스케어 연구동향을 살피는데 그 목적이 있다. 이를 위해 2001년부터 2018년 4월까지 Scopus에 게재된 2,690편을 대상으로 텍스트 분석, 각 기간별 빈도분석, 토픽모델링, 워드 클라우드, 에고 네트워크 분석을 수행하였다. 토픽 모델링 분석 결과 8개의 주요 연구토픽이 도출되었다. 8개 주요 연구토픽은 "AI in healthcare", " Smart hospital", "Healthcare platform", " blockchain in healthcare", "Smart health data", "Mobile healthcare", "Wellness care", "Cognitive healthcare" 순으로 나타났다. 토픽모델링 결과를 보다 심도 있게 살펴보기 위해 연구토픽별 에고 네트워크 분석을 하였다. 이를 통해 스마트 헬스케어 연구동향을 파악하고, 향후 연구의 방향성을 수립하는데 시사점을 제시하고자 한다.
International Journal of Advanced Culture Technology
/
제6권4호
/
pp.262-265
/
2018
Deep learning, a sub-field of machine learning changing the prospects of artificial intelligence (AI) because of its recent advancements and application in various field. Deep learning deals with algorithms inspired by the structure and function of the brain called artificial neural networks. This works reviews basic architecture and recent advancement of deep structured learning. It also describes contemporary applications of deep structured learning and its advantages over the treditional learning in artificial interlligence. This study is useful for the general readers and students who are in the early stage of deep learning studies.
Satish Babu Bandaru;Natarajasivan. D;Rama Mohan Babu. G
International Journal of Computer Science & Network Security
/
제23권7호
/
pp.39-48
/
2023
Breast cancer screening makes extensive utilization of mammography. Even so, there has been a lot of debate with regards to this application's starting age as well as screening interval. The deep learning technique of transfer learning is employed for transferring the knowledge learnt from the source tasks to the target tasks. For the resolution of real-world problems, deep neural networks have demonstrated superior performance in comparison with the standard machine learning algorithms. The architecture of the deep neural networks has to be defined by taking into account the problem domain knowledge. Normally, this technique will consume a lot of time as well as computational resources. This work evaluated the efficacy of the deep learning neural network like Visual Geometry Group Network (VGG Net) Residual Network (Res Net), as well as inception network for classifying the mammograms. This work proposed optimization of ResNet with Teaching Learning Based Optimization (TLBO) algorithm's in order to predict breast cancers by means of mammogram images. The proposed TLBO-ResNet, an optimized ResNet with faster convergence ability when compared with other evolutionary methods for mammogram classification.
Item cold start is a well studied problem in the research field of recommender systems. Still, many existing collaborative filters cannot recommend items accurately when only a few user-item interaction data are available for newly introduced items (Cold items). We propose a interaction feature prediction method to mitigate item cold start problem. The proposed method predicts the interaction features that collaborative filters can calculate for the cold items. For prediction, in addition to content features of the cold-items used by state-of-the-art methods, our method exploits the interaction features of k-nearest content neighbors of the cold-items. An attention network is adopted to extract appropriate information from the interaction features of the neighbors by examining the contents feature similarity between the cold-item and its neighbors. Our evaluation on a real dataset CiteULike shows that the proposed method outperforms state-of-the-art methods 0.027 in Recall@20 metric and 0.023 in NDCG@20 metric.
4차 산업혁명에 따라 AI, 데이터 분석가 등 AI·데이터 사이언스 분야의 일자리에 대한 수요와 관심이 증가하고 있다. 그에 발맞춰 효과적으로 해당 분야의 직무를 수행할 수 있는 인력을 적시에 공급하기 위해서 구직자는 회사가 요구하는 역량을 개발하고, 대학은 양성 교육을 담당하여야 한다. 하지만, 적절한 역량을 갖춘 인력 공급의 이해 당사자인 구직자, 회사 그리고 대학 차원에서 적절한 대응 전략 마련에 어려움을 겪고 있다. 따라서, 본 연구는 필요충분한 직무 역량을 가진 인재 양성 및 공급을 위해 실무에서 요구되는 역량이 무엇인지 알아보고, 대학 차원에서의 역량 개발 방안을 제안하는 것을 목적으로 한다. AI·데이터 사이언스 분야에서의 필요 역량을 파악하고자 채용 플랫폼 링크드인(LinkedIn) 사이트의 채용공고 데이터를 텍스트 마이닝 기법을 활용하여 분석하였다. 이후, 국제적인 AI·데이터 사이언스 분야 대학원 교육과정과 채용 담당자와의 인터뷰 결과를 각각 토픽 모델의 결과와 비교 및 검증하는 절차를 통해, 대학 차원에서의 활용할 수 있는 커리큘럼을 제안하는 것으로 연구를 진행하였다.
본 논문에서는인공지능(AI; Artificial Intelligence)알고리즘을 활용한 조음 장애 아동들의 '개인화된 맞춤형 학습' 모바일 애플리케이션을 제시한다. 조음과 관련된 빅데이터(Big Data)를 수집-정제-가공한 데이터 셋(Data Set)으로 학습자의 조음 상황 및 정도를 분석, 판단, 예측한다. 특히, 인공지능 활용 시 기존 애플리케이션에 비해 어떻게 개선되고 고도화할수 있는지를 UX/UI(GUI) 측면에서 바라보고 프로토타입 모델을 설계해 보았다. 지금까지 시각적 경험에 많이 치중해 있었다면, 이제는 데이터를 어떻게 가공하여 사용자에게 UX/UI(GUI) 경험을 제공할 수 있는지가 중요한 시점이다. 제시한 모바일 애플리케이션의 UX/UI(GUI)는 딥러닝(Deep Learning)의 CRNN(Convolution Recurrent Neural Network)과 Auto Encoder GPT-3 (Generative Pretrained Transformer)를 활용하여 학습자의 조음 정도와 상황에 맞게 제공하고자 하였다. 인공지능 알고리즘의 활용은 조음 장애 아동들에게 완성도 높은 학습환경을 제공하여 학습효과를 높일 수 있를 것이다. '개인화된 맞춤형 학습'으로 조음의 완성도를 높여서, 대화에 대한 두려움이나 불편함을 갖지 않길 바란다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.