• Title/Summary/Keyword: Network biology

Search Result 514, Processing Time 0.029 seconds

Stage specific transcriptome profiles at cardiac lineage commitment during cardiomyocyte differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Han, Jin
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.464-469
    • /
    • 2021
  • Cardiomyocyte differentiation occurs through complex and finely regulated processes including cardiac lineage commitment and maturation from pluripotent stem cells (PSCs). To gain some insight into the genome-wide characteristics of cardiac lineage commitment, we performed transcriptome analysis on both mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs) at specific stages of cardiomyocyte differentiation. Specifically, the gene expression profiles and the protein-protein interaction networks of the mESC-derived platelet-derived growth factor receptor-alpha (PDGFRα)+ cardiac lineage-committed cells (CLCs) and hiPSC-derived kinase insert domain receptor (KDR)+ and PDGFRα+ cardiac progenitor cells (CPCs) at cardiac lineage commitment were compared with those of mesodermal cells and differentiated cardiomyocytes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the genes significantly upregulated at cardiac lineage commitment were associated with responses to organic substances and external stimuli, extracellular and myocardial contractile components, receptor binding, gated channel activity, PI3K-AKT signaling, and cardiac hypertrophy and dilation pathways. Protein-protein interaction network analysis revealed that the expression levels of genes that regulate cardiac maturation, heart contraction, and calcium handling showed a consistent increase during cardiac differentiation; however, the expression levels of genes that regulate cell differentiation and multicellular organism development decreased at the cardiac maturation stage following lineage commitment. Additionally, we identified for the first time the protein-protein interaction network connecting cardiac development, the immune system, and metabolism during cardiac lineage commitment in both mESC-derived PDGFRα+ CLCs and hiPSC-derived KDR+PDGFRα+ CPCs. These findings shed light on the regulation of cardiac lineage commitment and the pathogenesis of cardiometabolic diseases.

Basic network pharmacological analysis of Salvia miltiorrhiza root for further application to an animal stroke model (단삼(丹參)을 뇌졸중 동물모델에 적용하기 위한 기초적인 네트워크 약리학 분석)

  • Choi, Myeongjin;Yang, Wonjin;Lee, Byoungho;Cho, Suin
    • Herbal Formula Science
    • /
    • v.29 no.1
    • /
    • pp.19-31
    • /
    • 2021
  • Objectives : The root of Salvia miltiorrhiza, known as 'Dansam (DS, 丹參)', is used for and treating cardiovascular diseases based on its efficacy of promoting blood circulation and breaking through a blood stasis. In this study, we would like to see if DS could be effectively used for stroke from the perspective of network pharmacology. Methods : The analysis was conducted using Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database to derive the main active compounds of DS and identify the mechanism of each compound acting on the human body. The networks between compounds, target protein and disease were expressed through Cytoscape. Protein-protein interaction (PPI) analysis was performed using STRING database. Results : Fifty two active compounds of DS were identified by screening the ingredients of DS through TCMSP. Based on the networks of these compounds with target protein and disease, it can be said that DS might be effective for preventing and treating stroke. PPI result showed that adrenergic receptor has many interactions among proteins, indicating its significance in stroke pathway. Conclusion : In this study, we derived target proteins and target diseases of DS that could be used in study of stroke. However, since it is uncertain if these targets can be controlled by DS extracts or not, we would like to confirm the results with further animal experiments.

Combined application of rapamycin and atorvastatin improves lipid metabolism in apolipoprotein E-deficient mice with chronic kidney disease

  • Song, Eun Ju;Ahn, Sanghyun;Min, Seung-Kee;Ha, Jongwon;Oh, Goo Taeg
    • BMB Reports
    • /
    • v.54 no.3
    • /
    • pp.170-175
    • /
    • 2021
  • Atherosclerosis arising from the pro-inflammatory conditions associated with chronic kidney disease (CKD) increases major cardiovascular morbidity and mortality. Rapamycin (RAPA) is known to inhibit atherosclerosis under CKD and non-CKD conditions, but it can cause dyslipidemia; thus, the co-application of lipid-lowering agents is recommended. Atorvastatin (ATV) has been widely used to reduce serum lipids levels, but its synergistic effect with RAPA in CKD remains unclear. Here, we analyzed the effect of their combined treatment on atherosclerosis stimulated by CKD in apolipoprotein E-deficient (ApoE-/-) mice. Oil Red O staining revealed that treatment with RAPA and RAPA+ ATV, but not ATV alone, significantly decreased the atherosclerotic lesions in the aorta and aortic sinus, compared to those seen in the control (CKD) group. The co-administration of RAPA and ATV improved the serum lipid profile and raised the expression levels of proteins involved in reverse cholesterol transport (LXRα, CYP7A1, ABCG1, PPARγ, ApoA1) in the liver. The CKD group showed increased levels of various genes encoding atherosclerosispromoting cytokines in the spleen (Tnf-α, Il-6 and Il-1β) and aorta (Tnf-α and Il-4), and these increases were attenuated by RAPA treatment. ATV and RAPA+ATV decreased the levels of Tnf-α and Il-1β in the spleen, but not in the aorta. Together, these results indicate that, in CKD-induced ApoE-/- mice, RAPA significantly reduces the development of atherosclerosis by regulating the expression of inflammatory cytokines and the co-application of ATV improves lipid metabolism.

Identification of Differentially-Methylated Genes and Pathways in Patients with Delayed Cerebral Ischemia Following Subarachnoid Hemorrhage

  • Kim, Bong Jun;Youn, Dong Hyuk;Chang, In Bok;Kang, Keunsoo;Jeon, Jin Pyeong
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.1
    • /
    • pp.4-12
    • /
    • 2022
  • Objective : We reported the differentially methylated genes in patients with subarachnoid hemorrhage (SAH) using bioinformatics analyses to explore the biological characteristics of the development of delayed cerebral ischemia (DCI). Methods : DNA methylation profiles obtained from 40 SAH patients from an epigenome-wide association study were analyzed. Functional enrichment analysis, protein-protein interaction (PPI) network, and module analyses were carried out. Results : A total of 13 patients (32.5%) experienced DCI during the follow-up. In total, we categorized the genes into the two groups of hypermethylation (n=910) and hypomethylation (n=870). The hypermethylated genes referred to biological processes of organic cyclic compound biosynthesis, nucleobase-containing compound biosynthesis, heterocycle biosynthesis, aromatic compound biosynthesis and cellular nitrogen compound biosynthesis. The hypomethylated genes referred to biological processes of carbohydrate metabolism, the regulation of cell size, and the detection of a stimulus, and molecular functions of amylase activity, and hydrolase activity. Based on PPI network and module analysis, three hypermethylation modules were mainly associated with antigen-processing, Golgi-to-ER retrograde transport, and G alpha (i) signaling events, and two hypomethylation modules were associated with post-translational protein phosphorylation and the regulation of natural killer cell chemotaxis. VHL, KIF3A, KIFAP3, RACGAP1, and OPRM1 were identified as hub genes for hypermethylation, and ALB and IL5 as hub genes for hypomethylation. Conclusion : This study provided novel insights into DCI pathogenesis following SAH. Differently methylated hub genes can be useful biomarkers for the accurate DCI diagnosis.

Improving the Professional Competence of a Specialist in Poland by Implementing Multimedia Technologies

  • Kravchenko, Tetiana;Varga, Lesia;Lypchanko-Kovachyk, Oksana;Chinchoy, Alexander;Yevtushenko, Nataliia;Syladii, Ivan;Kuchai, Oleksandr
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.51-58
    • /
    • 2022
  • The article emphasizes the features of the modern education system in Poland, reveals the peculiarities of improving the professional competence of a specialist in Poland through the implementation of multimedia technologies. Various forms of innovations implemented in improving the professional competence of a specialist are listed: improvement (rationalization), modernization, innovation. The forms of professional improvement through the introduction of computer technologies in general and multimedia technologies, in particular, primarily include various professional courses, qualification, preparatory, methodological conferences, seminars, postgraduate studies, foreign and state internships. At the same time, the main direction is self-education. The subject of professional improvement in the application of computer technologies by specialists is the updating of existing knowledge, exchange of professional experience, planning, as well as discussion of innovative works in which specialists participate. Professional growth of specialists can occur both during work and in higher education institutions during their studies. Modernization of computer technologies, especially multimedia ones, is a necessary condition for the functioning of specialists in modern society, since specialists are at the center of the educational process, during the improvement of professional competence. The main functions of the educational process necessary for improving the professional competence of specialists through the implementation of multimedia technologies are revealed. These functions not only contribute to the professional improvement of specialists, but also affect their solutions and optimize the maintenance of contacts between specialists. The importance of creating conditions that are consistent with the modern needs of innovative education is emphasized.

Identification of Distinct Vaginal Microbiota Signatures Contributing Toward Preterm Birth Using an Integrative Computational Approach

  • Sudeepti Kulshreshtha;Priyanka Narad;Brojen Singh;Deepak Modi;Abhishek Sengupta
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.109-123
    • /
    • 2023
  • Preterm birth (PTB) is defined as giving birth prior to the 37th week of pregnancy and is a major cause of infant mortality. Studies have indicated that the vaginal microbiota's composition and its dysbiosis, particularly during pregnancy, may play a major role in PTB. While previous research work concentrated on well-studied microorganisms such as Lactobacillus, Prevotella, Gardnerella, various other microbes, and their significance in the vaginal microbiota's stability remain unknown. Moreover, current studies have focused primarily on the relative abundances of the microbes found, without considering their interactions with other members of the vaginal microbiota. In this work, we developed a novel computational approach and performed taxonomic classification of vaginal microbiota samples stratified longitudinally (Term/PTB) to observe compositional disparities and find underexamined microbes that may be contributing to PTB. Furthermore, we carried out a correlational analysis to build a microbial co-interaction network and investigated the functional implications of the genes present in both Term and PTB samples. The co-occurrence network revealed that Lactobacillus acts in solidarity to maintain the stability of the vaginal microbiota and did not have strong co-interactions with any of the other microbes. Similarly, microbes with strong interactions with Atopobium, a well-known marker microbe of PTB, were also observed. Additionally, several genes such as PTXA, FANCM, GPX, and DUSP were found to be playing an important role in the occurrence of PTB. This study provides a novel conceptual framework revealing distinct vaginal microbiota signatures that could be potential therapeutic targets for the prevention of PTB.

Morphometric and genetic diversity of Rasbora several species from farmed and wild stocks

  • Bambang Retnoaji;Boby Muslimin;Arif Wibowo;Ike Trismawanti
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.9
    • /
    • pp.569-581
    • /
    • 2023
  • The morphology and genetic identification of Rasbora lateristriata and Rasbora argyrotaenia between cultivated and wild populations has never been reported. This study compares morphology and cytochrome c oxidase (COI) genes between farmed and wild stock Rasbora spp. in Java and Sumatra island, Indonesia. We analyzed the truss network measurement (TNM) characters of 80 fish using discriminant function analysis statistical tests. DNA was extracted from muscle tissue of 24 fish specimens, which was then followed by polymerase chain reaction, sequencing, phylogenetic analysis, fixation index analysis, and statistical analysis of haplotype networks. Basic Local Alignment Search Tool analysis validated the following species: R. lateristriata and R. argyrotaenia from farming (Jogjakarta); Rasbora agryotaenia (Purworejo), R. lateristriata (Purworejo and Malang), Rasbora dusonensis (Palembang), and Rasbora einthovenii (Riau) from natural resources. Based on TNM characters, Rasbora spp. were divided into four groups, referring to four distinct characters in the middle of the body. The phylogenetic tree is divided into five clades. The genetic distance between R. argyrotaenia (Jogjakarta) and R. lateristriata (Malang) populations (0.66) was significantly different (p < 0.05). R. lateristriata (Purworejo) has the highest nucleotide diversity (0.43). R. argyrotaenia from Jogjakarta and Purworejo shared the same haplotype. The pattern of gene flow among them results from the two populations' close geographic proximity and environmental effects. R. argyrotaenia had low genetic diversity, therefore, increasing heterozygosity in cultivated populations is necessary to avoid inbreeding. Otherwise, R. lateristriata (Purworejo) had a greater gene variety that could be used to develop breeding. In conclusion, the middle body parts are a distinguishing morphometric character of Rasbora spp., and the COI gene is more heterozygous in the wild population than in farmed fish, therefore, enrichment of genetic variation is required for sustainable Rasbora fish farming.

Genome-Wide Association Study of Bone Mineral Density in Korean Men

  • Bae, Ye Seul;Im, Sun-Wha;Kang, Mi So;Kim, Jin Hee;Lee, Soon Hang;Cho, Be Long;Park, Jin Ho;Nam, You-Seon;Son, Ho-Young;Yang, San Deok;Sung, Joohon;Oh, Kwang Ho;Yun, Jae Moon;Kim, Jong Il
    • Genomics & Informatics
    • /
    • v.14 no.2
    • /
    • pp.62-68
    • /
    • 2016
  • Osteoporosis is a medical condition of global concern, with increasing incidence in both sexes. Bone mineral density (BMD), a highly heritable trait, has been proven a useful diagnostic factor in predicting fracture. Because medical information is lacking about male osteoporotic genetics, we conducted a genome-wide association study of BMD in Korean men. With 1,176 participants, we analyzed 4,414,664 single nucleotide polymorphisms (SNPs) after genomic imputation, and identified five SNPs and three loci correlated with bone density and strength. Multivariate linear regression models were applied to adjust for age and body mass index interference. Rs17124500 ($p=6.42{\times}10^{-7}$), rs34594869 ($p=6.53{\times}10^{-7}$) and rs17124504 ($p=6.53{\times}10^{-7}$) in 14q31.3 and rs140155614 ($p=8.64{\times}10^{-7}$) in 15q25.1 were significantly associated with lumbar spine BMD (LS-BMD), while rs111822233 ($p=6.35{\times}10^{-7}$) was linked with the femur total BMD (FT-BMD). Additionally, we analyzed the relationship between BMD and five genes previously identified in Korean men. Rs61382873 (p = 0.0009) in LRP5, rs9567003 (p = 0.0033) in TNFSF11 and rs9935828 (p = 0.0248) in FOXL1 were observed for LS-BMD. Furthermore, rs33997547 (p = 0.0057) in ZBTB and rs1664496 (p = 0.0012) in MEF2C were found to influence FT-BMD and rs61769193 (p = 0.0114) in ZBTB to influence femur neck BMD. We identified five SNPs and three genomic regions, associated with BMD. The significance of our results lies in the discovery of new loci, while also affirming a previously significant locus, as potential osteoporotic factors in the Korean male population.

Transplantation Immunology from the Historical Perspective (이식면역학의 역사적 고찰)

  • Park, Chung-Gyu
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • Transplantation would be the only way to cure the end-stage organ failure involving heart, lung, liver, kidney and pancreas. The replacement of the parts of the body damaged to lose its function or lost to trauma must be a dream of human-being. Human history is replete with chimeras, from sphinxes to mermaids, making one wonder if the ancients might actually have dreamed of what now is called 'xenotransplantation'. In the 20th century, the transplantation of organs and tissues to cure disease has become a clinical reality. The development in the fields of surgical techniques, physiology and immunology attributed to the successful transplantation in human. In the center of the successful transplantation lies the progress in understanding the cellular and molecular biology of immune system which led to the development of immunosuppressive drugs and the invention of the concept of immunological tolerance. The mandatory side effects of immunosuppressive drugs including infection and cancer forced us to search alternative approaches along with the development of new immunosuppressive agents. Among the alternative approaches, the induction of a state of immunologic tolerance would be the most promising and the most generic applicability as a future therapy. Recent reports documenting long-term graft survival without immunosuppression suggest that tolerance-based therapies may become a clinical reality. Last year, we saw the epoch making success of overcoming hyperacute rejection in porcine to primate xenotransplantation which will lead porcine to human xenotransplantation to clinical reality. In this review, I dare to summarize the development of transplantation immunology from the perspective of history.

Regulation of Tumor Immune Surveillance and Tumor Immune Subversion by TGF-$\beta$

  • Park, Hae-Young;Wakefield, Lalage M;Mamura, Mizuko
    • IMMUNE NETWORK
    • /
    • v.9 no.4
    • /
    • pp.122-126
    • /
    • 2009
  • Transforming growth factor-$\beta$ (TGF-$\beta$) is a highly pleiotropic cytokine playing pivotal roles in immune regulation. TGF-$\beta$ facilitates tumor cell survival and metastasis by targeting multiple cellular components. Focusing on its immunosuppressive functions, TGF-$\beta$ antagonists have been employed for cancer treatment to enhance tumor immunity. TGF-$\beta$ antagonists exert anti-tumor effects through #1 activating effector cells such as NK cells and cytotoxic $CD8^+$ Tcells (CTLs), #2 inhibiting regulatory/suppressor cell populations, #3 making tumor cells visible to immune cells, #4 inhibiting the production of tumor growth factors. This review focuses on the effect of TGF-$\beta$ on T cells, which are differentiated into effector T cells or newly identified tumor-supporting T cells.