• Title/Summary/Keyword: Network based robot

검색결과 571건 처리시간 0.034초

RBF 신경망과 강인 항을 적용한 I-PID 기반 2 자유도 뱀 로봇 머리 제어에 관한 연구 (A Study on I-PID-Based 2-DOF Snake Robot Head Control Scheme Using RBF Neural Network and Robust Term)

  • 김성재;서진호
    • 로봇학회논문지
    • /
    • 제19권2호
    • /
    • pp.139-148
    • /
    • 2024
  • In this paper, we propose a two-degree-of-freedom snake robot head system and an I-PID (Intelligent Proportional-Integral-Derivative)-based controller utilizing RBF (Radial Basis Function) neural network and adaptive robust terms as a control strategy to reduce rotation occurring in the snake robot head. This study proposes a two-degree-of-freedom snake robot head system to avoid complex snake robot dynamics. This system has a control system independent of the snake robot. Subsequently, it utilizes an I-PID controller to implement a control system that can effectively manage rotation at the snake robot head, the robot's nonlinearity, and disturbances. To compensate for the time delay estimation errors occurring in the I-PID control system, an RBF neural network is integrated. Additionally, an adaptive robust term is designed and integrated into the control system to enhance robustness and generate control inputs responsive to signal changes. The proposed controller satisfies stability according to Lyapunov's theory. The proposed control strategy was tested using a 9-degreeof-freedom snake robot. It demonstrates the capability to reduce rotation in Lateral undulation, Rectilinear, and Sidewinding locomotion.

네트워크기반 로봇 축구 시스템 (Network Based Robot Soccer System)

  • 조동권;정상봉;성영휘
    • 대한임베디드공학회논문지
    • /
    • 제4권1호
    • /
    • pp.9-15
    • /
    • 2009
  • In this paper, a network based robot soccer system is proposed. The system consists of robots, an image processing sub-system, a game server, and client systems. Embedded technique is applied to the hardware and software for controlling the robots and image processing. In this robot soccer system, a gamer can see and control robots in a remote site through Internet. During the game, the game server gives geometrical information on robots such as positions and orientations. We demonstrated the game in public and obtained optimistic results even though some technical problemssuch as communication delay and precise control for the robots should be improved.

  • PDF

고속 정밀 로봇 제어를 위한 실시간 중앙 집중식 소프트 모션 제어 시스템 (Real-Time Centralized Soft Motion Control System for High Speed and Precision Robot Control)

  • 정일균;김정훈
    • 대한임베디드공학회논문지
    • /
    • 제8권6호
    • /
    • pp.295-301
    • /
    • 2013
  • In this paper, we propose a real-time centralized soft motion control system for high speed and precision robot control. The system engages EtherCAT as high speed industrial motion network to enable force based motion control in real-time and is composed of software-based master controller with PC and slave interface modules. Hard real-time control capacity is essential for high speed and precision robot control. To implement soft based real time control, The soft based master controller is designed using a real time kernel (RTX) and EtherCAT network, and servo processes are located in the master controller for centralized motion control. In the proposed system, slave interface modules just collect and transfer all sensor information of robot to the master controller via the EtherCAT network. It is proven by experimental results that the proposed soft motion control system has real time controllability enough to apply for various robot control systems.

네트워크 기반 자율이동 로봇을 위한 시간지연 보상을 통한 장애물 회피 알고리즘의 성능 개선 (Performance Enhancement of an Obstacle Avoidance Algorithm using a Network Delay Compensationfor a Network-based Autonomous Mobile Robot)

  • 김주민;김진우;김대원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1898-1899
    • /
    • 2011
  • In this paper, we propose an obstacle avoidance algorithm for a network-based autonomous mobile robot. The obstacle avoidance algorithm is based on the VFH (Vector Field Histogram) algorithm and delay-compensative methods with the VFH algorithm are proposed for the network-based robot that is a unified system composed of distributed environmental sensors, mobile actuators, and the VFH controller. Firstly, the compensated readings of the sensors are used for building the polar histogram of the VFH algorithm. Secondly, a sensory fusion using the Kalman filter is proposed for the localization of the robot to compensate both the delay of the readings of an odometry sensor and the delay of the readings of the environmental sensors. The performance enhancements of the proposed obstacle avoidance algorithm from the viewpoint of efficient path generation and accurate goal positioning are also shown in this paper through some simulation experiments by the Marilou Robotics Studio Simulator.

  • PDF

신경회로망을 이용한 비전 기반 이동 로봇의 위치제어에 대한 실험적 연구 (Experimental Studies of Vision Based Position Tracking Control of Mobile Robot Using Neural Network)

  • 정슬;장평수;원문철;홍섭
    • 제어로봇시스템학회논문지
    • /
    • 제9권7호
    • /
    • pp.515-526
    • /
    • 2003
  • Tutorial contents of kinematics and dynamics of a wheeled drive mobile robot are presented. Based on the dynamic model, simulation studies of position tracking of a mobile robot are performed. The control structure of several position control algorithms using visual feedback are proposed and their performances are compared. In order to compensate for uncertainties from unknown dynamics and ignored dynamic effects such as slip conditions, neural network based position control schemes are proposed. Experiments are conducted and the results show the performance of the vision based neural network control scheme fumed out to be the best among several proposed schemes.

셀룰라 신경회로망을 이용한 로봇축구 전략 및 제어 (Robot soccer strategy and control using Cellular Neural Network)

  • 신윤철;강훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.253-253
    • /
    • 2000
  • Each robot plays a role of its own behavior in dynamic robot-soccer environment. One of the most necessary conditions to win a game is control of robot movement. In this paper we suggest a win strategy using Cellular Neural Network to set optimal path and cooperative behavior, which divides a soccer ground into grid-cell based ground and has robots move a next grid-cell along the optimal path to approach the moving target.

  • PDF

무선 센서 네트워크를 이용한 ZMP측정에 의한 휴머노이드 로봇의 걸음새 구현 (The Implementation of Walking for a Humanoid Robot by ZMP measurement using Wireless Sensor Network)

  • 이보희;서규태;황병훈;공정식;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.95-97
    • /
    • 2005
  • This paper deals with the implementation of walking for a humanoid robot by ZMP measurement using wireless sensor network. ZMP is measured by FSR sensors which are mounted at each corner of a sole. The wireless sensor network collects the sensor data according and exchanges robot information between host PC and a robot system. The master controller mounted on robot body receives trajectory data from the host PC via sensor network and drives the joint motor based on trajectory data. The time scheduler of the master controller controls the events at the ratio of 100ms. With this configuration, the walking of the humanoid robot KHR-1 could be realized successfully.

  • PDF

전방향 이동로봇을 이용한 네트워크기반 원격 감시시스템 구현 (Development of Network based Remote Surveillance System Using Omni-Directional Mobile Robot)

  • 서용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권4호
    • /
    • pp.91-97
    • /
    • 2010
  • 본 논문은 전방향 이동로봇과 로봇에 탑재된 카메라를 이용한 네트워크기반 원격 감시시스템의 구현에 대하여 기술한다. 제안된 감시시스템은 기존의 건물 곳곳에 설치된 감시 카메라의 영상이 고정된 및 시야에서 침입탐지를 수행하는데 비해 이동로봇을 이용해 원격으로 로봇을 자유롭게 조종해 감시하는 것이 특징이다. 감시시스템 구현에 사용된 이동로봇은 전방향 제어가 가능한 세 개의 바퀴를 가지고 있으며, 이를 네트워크 환경에서 원격으로 제어하고 영상을 획득하기 위해 마이크로소프트사의 MSRDS를 이용해 로봇 기능들을 네트워크 노드에서 실행되는 서비스들로 구현하였다. 실험을 통해 개발된 전방향 이동로봇 원격 감시시스템은 유무선 네트워크 환경에서 자유롭게 이동로봇을 조종하며 원격 모니터링이 가능함을 보여주었다. 또한 개발된 감시시스템은 획득된 원격 영상을 네트워크에 연결된 다른 PC에서 실시간으로 전송받아 색상기만 물체탐지 및 움직임 검출을 수행하였다.

휴머노이드 로봇에 대한 CAN(Controller Area Network) 적용 (Application of Controller Area Network to Humanoid Robot)

  • 구자봉;허욱열;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.77-79
    • /
    • 2004
  • Because robot hardware architecture generally is consisted of a few sensors and motors connected to the central processing unit, this type of structure is led to time consuming and unreliable system. For analysis, one of the fundamental difficulties in real-time system is how to be bounded the time behavior of the system. When a distributed control network controls the robot, with a central computing hub that sets the goals for the robot, processes the sensor information and provides coordination targets for the joints. If the distributed system supposed to be connected to a control network, the joints have their own control processors that act in groups to maintain global stability, while also operating individually to provide local motor control. We try to analyze the architecture of network-based humanoid robot's leg part and deal with its application using the CAN(Controller Area Network) protocol.

  • PDF