• 제목/요약/키워드: Network anomaly

검색결과 274건 처리시간 0.04초

양방향 GPT 네트워크를 이용한 VMS 메시지 이상 탐지 (Detection of Anomaly VMS Messages Using Bi-Directional GPT Networks)

  • 최효림;박승영
    • 한국ITS학회 논문지
    • /
    • 제21권4호
    • /
    • pp.125-144
    • /
    • 2022
  • VMS (variable message signs) 시스템이 악의적인 공격에 노출되어 교통안전과 관련된 거짓 정보를 출력하게 된다면 운전자에게 심각한 위험을 초래할 수 있다. 이러한 경우를 방지하기 위해 VMS 시스템에 사용되는 메시지들을 수집하여 평상시의 패턴을 학습한다면 VMS 시스템에 출력될 수 있는 이상 메시지를 빠르게 감지하고 이에 대한 대응을 할 수 있을 것이다. 본 논문에서는 양방향 GPT (generative pre-trained transformer) 모델을 이용하여 VMS 메시지의 평상 시 패턴을 학습한 후 이상 메시지를 탐지하는 기법을 제안한다. 구체적으로, 제안된 기법에 VMS 메시지 및 시스템 파라미터를 입력 하고 이에 대한 NLL (negative log likelihood) 값을 최소화하도록 학습한다. 학습이 완료되면 판정해야 할 대상의 NLL 값을 계산한 후, 문턱치 값 이상일 경우 이를 이상으로 판정한다. 실험 결과를 통해, 공격에 의한 악의적인 메시지 탐지뿐만 아니라 시스템의 오류가 발생하는 상황에 대한 탐지도 가능함을 보였다.

네트워크 보안에서 모니터링 기반 실시간 침입 탐지 (A Real-Time Intrusion Detection based on Monitoring in Network Security)

  • 임승철
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권3호
    • /
    • pp.9-15
    • /
    • 2013
  • 최근 침입 탐지 시스템은 공격의 수가 극적으로 증가하고 있기 때문에 컴퓨터 네트워크 시스템에서 아주 중요한 기술이다. 어려운 침입에 대한 감시데이터를 분석하기 때문에 침입 탐지 방법의 대부분은 실시간적으로 침입을 탐지하지 않는다. 네트워크 침입 탐지 시스템은 개별 사용자, 그룹, 원격 호스트와 전체 시스템의 활동을 모니터링하고 그들이 발생할 때, 내부와 외부 모두에서 의심 보안 위반을 탐지하는 데 사용한다. 그것은 시간이 지남에 따라 사용자의 행동 패턴을 학습하고 이러한 패턴에서 벗어나는 행동을 감지한다. 본 논문에서 알려진 시스템의 취약점 및 침입 시나리오에 대한 정보를 인코딩하는 데 사용할 수 있는 규칙 기반 구성 요소를 사용한다. 두 가지 방법을 통합하는 것은 침입 탐지 시스템 권한이 있는 사용자 또는 센서 침입 탐지 시스템 (IDS)에서 데이터를 수집 RFM 분석 방법론 및 모니터링을 사용하여 비정상적인 사용자 (권한이 없는 사용자)에 의해 침입뿐만 아니라 오용을 탐지하기위한 포괄적인 시스템을 만든다.

VANETs을 위한 가중치 기반 침입탐지 방법의 설계 및 평가 (Design and Evaluation of a Weighted Intrusion Detection Method for VANETs)

  • 오선진
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권3호
    • /
    • pp.181-188
    • /
    • 2011
  • 무선 네트워크와 모바일 컴퓨팅 응용의 급속한 보급과 더불어, 최근 네트워크 보안의 배경도 많은 변화를 가져왔다. 특히 이동성이 높은 차량 노드들로 네트워크 위상을 유지하는 차량 애드 혹 네트워크(Vehicular Ad Hoc Networks: VANETs)는 일반적으로 불안정한 통신 링크를 갖는 자기 조직화 P2P 망으로, 고정된 인프라 구조나 중앙 통제 라우팅 장비 없이 자동으로 망을 구성하고, 시간에 따라 고속으로 이동하며 망에 결합하거나 이탈하는 개방 망이므로 중앙 집중 제어 없이 누구나 접속이 허용되기 때문에 네트워크상에 해로운 비정상 행위 노드들에 대한 침입에 매우 취약하다. 본 논문에서는 VANETs에서의 노드들의 활동에 대한 비정상 행위를 효율적으로 식별하여 침입을 탐지할 수 있는 러프집합을 이용한 가중치 기반 침입탐지 방법을 제안하고, 그 성능을 모의실험을 통해 임계 허용 오차 ${\epsilon}$에 대한 비정상 행위로 인한 침입 탐지율과 거짓 경고율로 평가한다.

실시간 탐지를 위한 인공신경망 기반의 네트워크 침입탐지 시스템 (An Intrusion Detection System based on the Artificial Neural Network for Real Time Detection)

  • 김태희;강승호
    • 융합보안논문지
    • /
    • 제17권1호
    • /
    • pp.31-38
    • /
    • 2017
  • 네트워크를 통한 사이버 공격 기법들이 다양화, 고급화 되면서 간단한 규칙 기반의 침입 탐지/방지 시스템으로는 지능형 지속 위협(Advanced Persistent Threat: APT) 공격과 같은 새로운 형태의 공격을 찾아내기가 어렵다. 기존에 알려지지 않은 형태의 공격 방식을 탐지하는 이상행위 탐지(anomaly detection)를 위한 해결책으로 최근 기계학습 기법을 침입탐지 시스템에 도입한 연구들이 많다. 기계학습을 이용하는 경우, 사용하는 특징 집합에 침입탐지 시스템의 효율성과 성능이 크게 좌우된다. 일반적으로, 사용하는 특징이 많을수록 침입탐지 시스템의 정확성은 높아지는 반면 탐지를 위해 소요되는 시간이 많아져 긴급성을 요하는 경우 문제가 된다. 논문은 이러한 두 가지 조건을 동시에 충족하는 특징 집합을 찾고자 다목적 유전자 알고리즘을 제안하고 인공신경망에 기반한 네트워크 침입탐지 시스템을 설계한다. 제안한 방법의 성능 평가를 위해 NSL_KDD 데이터를 대상으로 이전에 제안된 방법들과 비교한다.

비트코인 네트워크 트랜잭션 이상 탐지를 위한 특징 선택 방법 (The Method of Feature Selection for Anomaly Detection in Bitcoin Network Transaction)

  • 백의준;신무곤;지세현;박지태;김명섭
    • KNOM Review
    • /
    • 제21권2호
    • /
    • pp.18-25
    • /
    • 2018
  • 사토시 나타모토에 의해 블록체인 기술이 개발되고 비트코인이 새로운 암호화폐 시장을 개척한 이후 여러 암호 화폐들이 등장하고 그 수와 규모는 나날이 증가하고 있다. 또한 블록체인 기술의 익명성과 여러 취약점을 이용한 범죄들이 발생하고 있으며 이에 취약점 개선과 범죄 예방을 위한 많은 연구들이 진행되고 있으나 범죄를 저지르는 사용자들을 탐지해내기엔 역부족이다. 따라서 네트워크 내 자금 세탁, 자금 탈취 등 이상 행위를 탐지 하는 것은 매우 중요하며 이에 본 논문에서는 비트코인 네트워크의 트랜잭션 및 유저 그래프의 특징들을 수집하고 이로부터 통계정보를 추출한 후 이를 로그 스케일 상에서 플롯으로 나타낸다. 시각화된 플롯을 Densification Power Law와 Power Degree Law에 따라 분석하고 결과적으로 비트코인 네트워크 내 비정상 트랜잭션 및 비정상 유저를 포함하는 이상 탐지에 적절한 특징들을 제시한다.

THE INTERFACE CONFIGURATION OF OVERSEA STATIONS AND OPERATION PLAN FOR KOMPSAT-2 LEOP

  • Baek Hyun-Chul;Kim Hae-Dong;Ahn Sang-Il;Kim Eun-Kyou
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.557-560
    • /
    • 2005
  • The Korea Multi-Purpose SATellite-2 (KOMPSAT -2) will be launched into a circular sun synchronous orbit in Dec. 2005. For the mission operation of the KOMPSAT-2 satellite, KARl Ground Station (KGS) consists of the Mission Control Elements (MCE), Image Reception & Processing Elements (IRPE) and the overseas stations. For the oversea stations, the Kongsberg Satellite Services (KSAT) is the prime supplier of support service. KSAT has the capability to provide Tracking Telemetry and Commanding (TT&C) nominal, contingency and anomaly support for every single orbit for most polar orbiting satellites. Also KSAT provides nodal service through the network management functionality for all oversea ground stations. This paper describes the oversea stations and the support for Launch and nominal TT&C services for KOMPSAT-2 and the operation plan for KOMPSAT-2.

  • PDF

Network Anomaly Detection using Hybrid Feature Selection

  • 김은혜;김세현
    • 한국정보보호학회:학술대회논문집
    • /
    • 한국정보보호학회 2006년도 하계학술대회
    • /
    • pp.649-653
    • /
    • 2006
  • In this paper, we propose a hybrid feature extraction method in which Principal Components Analysis is combined with optimized k-Means clustering technique. Our approach hierarchically reduces the redundancy of features with high explanation in principal components analysis for choosing a good subset of features critical to improve the performance of classifiers. Based on this result, we evaluate the performance of intrusion detection by using Support Vector Machine and a nonparametric approach based on k-Nearest Neighbor over data sets with reduced features. The Experiment results with KDD Cup 1999 dataset show several advantages in terms of computational complexity and our method achieves significant detection rate which shows possibility of detecting successfully attacks.

  • PDF

CNN을 이용한 선로전환기의 이상상황 탐지 (Anomaly Detection of Railway Point Machine using CNN)

  • 이종욱;노병준;박대희;정용화;윤석한
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.595-596
    • /
    • 2016
  • 열차의 진로를 변경시키는 선로전환기의 고장은 탈선 등과 같은 대형 사고를 유발시킬 수 있는 중요한 시설이다. 따라서 열차운행 안전 측면에서 해당 설비에 대한 모니터링은 필수적이다. 본 논문에서는 선로전환기의 구동 시 발생하는 소리 정보를 이용하여 선로전환기의 이상상황을 탐지하는 시스템을 제안한다. 먼저 제안한 시스템은 소리 센서에서 실시간으로 취득하는 소리 신호를 Power Spectral Density(PSD) 특징으로 변환한다. 추출된 PSD 특징은 이미 성능이 입증된 딥러닝의 대표적인 모델인 Convolutional Neural Network(CNN)에 적용하여 이상상황을 탐지한다. 실제 선로전환기의 전환 시 발생하는 소리 데이터를 취득하여 모의실험을 수행한 결과, 비정상 상황을 안정적으로 탐지함을 확인하였다.

비정상 행위 탐지를 위한 신경망 기반의 데이터 클러스터링 (Data Clustering using a Neural Network for Anomaly Detection)

  • 김인영;장병탁
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.31-34
    • /
    • 2000
  • 코호넨 자기조직 신경망을 사용하면 클러스터링뿐만 아니라 그 데이터가 할당된 클러스터의 대표값(Centroid)과의 거리 차이(Quantization Error)를 알아볼 수 있다 이를 이용하면 어떤 데이터가 정상적인 분포를 따르는지 정상적인 분포에서 벗어나는 비정상적인 데이터인지 알 수 있고, 유닉스 시스템 사용자의 명령어 사용 패턴에 적용하여 어떤 사용자의 명령어 사용 패턴이 정상적인 것인지 비정상적인 것인지 알 수 있다. 본 논문에서는 유닉스 시스템 사용자 8명의 명령어 패턴을 클러스터링한 후 Quantization Error를 이용하여 비정상 패턴을 탐지하는 오프라인에서의 비정상 행위를 탐지하는 시스템을 구현하였다. 그리고 통계적인 학습 방법을 적용한 비정상 패턴 탐지와의 비교를 통하여 두 가지 비정상 패턴 탐지 결과가 동일함을 확인하였다.

  • PDF

네트워크기반 비정상행위 탐지모델 생성을 위한 비감독 학습 알고리즘 비교분석 (Comparative Analysis of Unsupervised Learning Algorithm for Generating Network based Anomaly Behaviors Detection Model)

  • 이효승;심철준;원일용;이창훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (중)
    • /
    • pp.869-872
    • /
    • 2002
  • 네트워크 기반 침입탐지시스템은 연속적으로 발생하는 패킷의 무손실 축소와, 패킷으로 정상 또는 비정상 행위패턴을 정확히 모델링한 모델 생성이 전체성능을 판단하는 중요한 요소가 된다. 네트워크 기반 비정상행위 판정 침입탐지시스템에서는 이러한 탐지모델 구축을 위해 주로 감독학습 알고리즘을 사용한다. 본 논문은 탐지모델 구축에 사용하는 감독 학습 방식이 가지는 문제점을 지적하고, 그에 대한 대안으로 비감독 학습방식의 학습알고리즘을 제안한다. 감독 학습을 사용하여 탐지모델을 구축하기 위해서는 정상행위의 패킷을 취합해야 하는 사전 부담이 있는 반면에 비감독 학습을 사용하게 되면 이러한 사전작업 없이 탐지모델을 구축할 수 있다. 본 논문에서는 비감독학습 알고리즘을 비교 분석하기 위해서 COBWEB, k-means, Autoclass 알고리즘을 사용했으며, 성능을 평가하기 위해서 비정상행위도(Abnormal Behavior Level)를 계산하여 에러율을 구하였다.

  • PDF