VMS (variable message signs) 시스템이 악의적인 공격에 노출되어 교통안전과 관련된 거짓 정보를 출력하게 된다면 운전자에게 심각한 위험을 초래할 수 있다. 이러한 경우를 방지하기 위해 VMS 시스템에 사용되는 메시지들을 수집하여 평상시의 패턴을 학습한다면 VMS 시스템에 출력될 수 있는 이상 메시지를 빠르게 감지하고 이에 대한 대응을 할 수 있을 것이다. 본 논문에서는 양방향 GPT (generative pre-trained transformer) 모델을 이용하여 VMS 메시지의 평상 시 패턴을 학습한 후 이상 메시지를 탐지하는 기법을 제안한다. 구체적으로, 제안된 기법에 VMS 메시지 및 시스템 파라미터를 입력 하고 이에 대한 NLL (negative log likelihood) 값을 최소화하도록 학습한다. 학습이 완료되면 판정해야 할 대상의 NLL 값을 계산한 후, 문턱치 값 이상일 경우 이를 이상으로 판정한다. 실험 결과를 통해, 공격에 의한 악의적인 메시지 탐지뿐만 아니라 시스템의 오류가 발생하는 상황에 대한 탐지도 가능함을 보였다.
최근 침입 탐지 시스템은 공격의 수가 극적으로 증가하고 있기 때문에 컴퓨터 네트워크 시스템에서 아주 중요한 기술이다. 어려운 침입에 대한 감시데이터를 분석하기 때문에 침입 탐지 방법의 대부분은 실시간적으로 침입을 탐지하지 않는다. 네트워크 침입 탐지 시스템은 개별 사용자, 그룹, 원격 호스트와 전체 시스템의 활동을 모니터링하고 그들이 발생할 때, 내부와 외부 모두에서 의심 보안 위반을 탐지하는 데 사용한다. 그것은 시간이 지남에 따라 사용자의 행동 패턴을 학습하고 이러한 패턴에서 벗어나는 행동을 감지한다. 본 논문에서 알려진 시스템의 취약점 및 침입 시나리오에 대한 정보를 인코딩하는 데 사용할 수 있는 규칙 기반 구성 요소를 사용한다. 두 가지 방법을 통합하는 것은 침입 탐지 시스템 권한이 있는 사용자 또는 센서 침입 탐지 시스템 (IDS)에서 데이터를 수집 RFM 분석 방법론 및 모니터링을 사용하여 비정상적인 사용자 (권한이 없는 사용자)에 의해 침입뿐만 아니라 오용을 탐지하기위한 포괄적인 시스템을 만든다.
무선 네트워크와 모바일 컴퓨팅 응용의 급속한 보급과 더불어, 최근 네트워크 보안의 배경도 많은 변화를 가져왔다. 특히 이동성이 높은 차량 노드들로 네트워크 위상을 유지하는 차량 애드 혹 네트워크(Vehicular Ad Hoc Networks: VANETs)는 일반적으로 불안정한 통신 링크를 갖는 자기 조직화 P2P 망으로, 고정된 인프라 구조나 중앙 통제 라우팅 장비 없이 자동으로 망을 구성하고, 시간에 따라 고속으로 이동하며 망에 결합하거나 이탈하는 개방 망이므로 중앙 집중 제어 없이 누구나 접속이 허용되기 때문에 네트워크상에 해로운 비정상 행위 노드들에 대한 침입에 매우 취약하다. 본 논문에서는 VANETs에서의 노드들의 활동에 대한 비정상 행위를 효율적으로 식별하여 침입을 탐지할 수 있는 러프집합을 이용한 가중치 기반 침입탐지 방법을 제안하고, 그 성능을 모의실험을 통해 임계 허용 오차 ${\epsilon}$에 대한 비정상 행위로 인한 침입 탐지율과 거짓 경고율로 평가한다.
네트워크를 통한 사이버 공격 기법들이 다양화, 고급화 되면서 간단한 규칙 기반의 침입 탐지/방지 시스템으로는 지능형 지속 위협(Advanced Persistent Threat: APT) 공격과 같은 새로운 형태의 공격을 찾아내기가 어렵다. 기존에 알려지지 않은 형태의 공격 방식을 탐지하는 이상행위 탐지(anomaly detection)를 위한 해결책으로 최근 기계학습 기법을 침입탐지 시스템에 도입한 연구들이 많다. 기계학습을 이용하는 경우, 사용하는 특징 집합에 침입탐지 시스템의 효율성과 성능이 크게 좌우된다. 일반적으로, 사용하는 특징이 많을수록 침입탐지 시스템의 정확성은 높아지는 반면 탐지를 위해 소요되는 시간이 많아져 긴급성을 요하는 경우 문제가 된다. 논문은 이러한 두 가지 조건을 동시에 충족하는 특징 집합을 찾고자 다목적 유전자 알고리즘을 제안하고 인공신경망에 기반한 네트워크 침입탐지 시스템을 설계한다. 제안한 방법의 성능 평가를 위해 NSL_KDD 데이터를 대상으로 이전에 제안된 방법들과 비교한다.
사토시 나타모토에 의해 블록체인 기술이 개발되고 비트코인이 새로운 암호화폐 시장을 개척한 이후 여러 암호 화폐들이 등장하고 그 수와 규모는 나날이 증가하고 있다. 또한 블록체인 기술의 익명성과 여러 취약점을 이용한 범죄들이 발생하고 있으며 이에 취약점 개선과 범죄 예방을 위한 많은 연구들이 진행되고 있으나 범죄를 저지르는 사용자들을 탐지해내기엔 역부족이다. 따라서 네트워크 내 자금 세탁, 자금 탈취 등 이상 행위를 탐지 하는 것은 매우 중요하며 이에 본 논문에서는 비트코인 네트워크의 트랜잭션 및 유저 그래프의 특징들을 수집하고 이로부터 통계정보를 추출한 후 이를 로그 스케일 상에서 플롯으로 나타낸다. 시각화된 플롯을 Densification Power Law와 Power Degree Law에 따라 분석하고 결과적으로 비트코인 네트워크 내 비정상 트랜잭션 및 비정상 유저를 포함하는 이상 탐지에 적절한 특징들을 제시한다.
The Korea Multi-Purpose SATellite-2 (KOMPSAT -2) will be launched into a circular sun synchronous orbit in Dec. 2005. For the mission operation of the KOMPSAT-2 satellite, KARl Ground Station (KGS) consists of the Mission Control Elements (MCE), Image Reception & Processing Elements (IRPE) and the overseas stations. For the oversea stations, the Kongsberg Satellite Services (KSAT) is the prime supplier of support service. KSAT has the capability to provide Tracking Telemetry and Commanding (TT&C) nominal, contingency and anomaly support for every single orbit for most polar orbiting satellites. Also KSAT provides nodal service through the network management functionality for all oversea ground stations. This paper describes the oversea stations and the support for Launch and nominal TT&C services for KOMPSAT-2 and the operation plan for KOMPSAT-2.
In this paper, we propose a hybrid feature extraction method in which Principal Components Analysis is combined with optimized k-Means clustering technique. Our approach hierarchically reduces the redundancy of features with high explanation in principal components analysis for choosing a good subset of features critical to improve the performance of classifiers. Based on this result, we evaluate the performance of intrusion detection by using Support Vector Machine and a nonparametric approach based on k-Nearest Neighbor over data sets with reduced features. The Experiment results with KDD Cup 1999 dataset show several advantages in terms of computational complexity and our method achieves significant detection rate which shows possibility of detecting successfully attacks.
열차의 진로를 변경시키는 선로전환기의 고장은 탈선 등과 같은 대형 사고를 유발시킬 수 있는 중요한 시설이다. 따라서 열차운행 안전 측면에서 해당 설비에 대한 모니터링은 필수적이다. 본 논문에서는 선로전환기의 구동 시 발생하는 소리 정보를 이용하여 선로전환기의 이상상황을 탐지하는 시스템을 제안한다. 먼저 제안한 시스템은 소리 센서에서 실시간으로 취득하는 소리 신호를 Power Spectral Density(PSD) 특징으로 변환한다. 추출된 PSD 특징은 이미 성능이 입증된 딥러닝의 대표적인 모델인 Convolutional Neural Network(CNN)에 적용하여 이상상황을 탐지한다. 실제 선로전환기의 전환 시 발생하는 소리 데이터를 취득하여 모의실험을 수행한 결과, 비정상 상황을 안정적으로 탐지함을 확인하였다.
코호넨 자기조직 신경망을 사용하면 클러스터링뿐만 아니라 그 데이터가 할당된 클러스터의 대표값(Centroid)과의 거리 차이(Quantization Error)를 알아볼 수 있다 이를 이용하면 어떤 데이터가 정상적인 분포를 따르는지 정상적인 분포에서 벗어나는 비정상적인 데이터인지 알 수 있고, 유닉스 시스템 사용자의 명령어 사용 패턴에 적용하여 어떤 사용자의 명령어 사용 패턴이 정상적인 것인지 비정상적인 것인지 알 수 있다. 본 논문에서는 유닉스 시스템 사용자 8명의 명령어 패턴을 클러스터링한 후 Quantization Error를 이용하여 비정상 패턴을 탐지하는 오프라인에서의 비정상 행위를 탐지하는 시스템을 구현하였다. 그리고 통계적인 학습 방법을 적용한 비정상 패턴 탐지와의 비교를 통하여 두 가지 비정상 패턴 탐지 결과가 동일함을 확인하였다.
네트워크 기반 침입탐지시스템은 연속적으로 발생하는 패킷의 무손실 축소와, 패킷으로 정상 또는 비정상 행위패턴을 정확히 모델링한 모델 생성이 전체성능을 판단하는 중요한 요소가 된다. 네트워크 기반 비정상행위 판정 침입탐지시스템에서는 이러한 탐지모델 구축을 위해 주로 감독학습 알고리즘을 사용한다. 본 논문은 탐지모델 구축에 사용하는 감독 학습 방식이 가지는 문제점을 지적하고, 그에 대한 대안으로 비감독 학습방식의 학습알고리즘을 제안한다. 감독 학습을 사용하여 탐지모델을 구축하기 위해서는 정상행위의 패킷을 취합해야 하는 사전 부담이 있는 반면에 비감독 학습을 사용하게 되면 이러한 사전작업 없이 탐지모델을 구축할 수 있다. 본 논문에서는 비감독학습 알고리즘을 비교 분석하기 위해서 COBWEB, k-means, Autoclass 알고리즘을 사용했으며, 성능을 평가하기 위해서 비정상행위도(Abnormal Behavior Level)를 계산하여 에러율을 구하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.