Hundreds of millions of new posts and information are being uploaded and propagated everyday on Online Social Networks(OSN) like Twitter, Facebook, or Instagram. This paper proposes and implements a GPS-location based SNS data mapping, analysis, and visualization system, called Smart SNS Map, which collects SNS data from Twitter and Instagram using hundreds of PlanetLab nodes distributed across the globe. Like no other previous systems, our system uniquely supports a variety of functions, including GPS-location based mapping of collected tweets and Instagram photos, keyword-based tweet or photo searching, real-time heat-map visualization of tweets and instagram photos, sentiment analysis, word cloud visualization, etc. Overall, a system like this, admittedly still in a prototype phase though, is expected to serve a role as a sort of social weather station sooner or later, which will help people understand what are happening around the SNS users, systems, society, and how they feel about them, as well as how they change over time and/or space.
새로운 미디어를 통한 예술작품의 속성 중 관람자와의 상호작용성(interactivity)은 현재 넷아트(netart)에 있어서 가장 큰 이슈가 되고 있으며 예술전반에서 그 영향력이 점점 강조되고 있다. 이러한 영향으로 디지털 미디어 기술을 매체로 한 다양한 실험적인 예술작품들이 네트워크 공간 속에서 제작되고 있으며 이는 예술과 멀티미디어 기술의 다양한 접목을 통한 시도이다. 본 연구자는 넷아트에 관련된 연구 사례를 분석하여 이를 바탕으로 사용자와 작품 간에 상호작용이 가능한 색 데이터의 시각화 표현 방법을 제안한다. 이러한 작업은 이미지에서 추출한 색 데이터를 분석한 후, 이를 바탕으로 조형 요소에 기초한 유동적 형상을 제작하는 것은 데이터를 회화적으로 표현하는 실험적 접근이고, 데이터의 미적 시각화 기법에 대한 다양성을 추구하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권2호
/
pp.311-326
/
2024
The rapid development of neural network technology promotes the neural network model driven by big data to overcome the texture effect of complex objects. Due to the limitations in complex scenes, it is necessary to establish custom template matching and apply it to the research of many fields of computational vision technology. The dependence on high-quality small label sample database data is not very strong, and the machine learning system of deep feature connection to complete the task of texture effect inference and speculation is relatively poor. The style transfer algorithm based on neural network collects and preserves the data of patterns, extracts and modernizes their features. Through the algorithm model, it is easier to present the texture color of patterns and display them digitally. In this paper, according to the texture effect reasoning of custom template matching, the 3D visualization of the target is transformed into a 3D model. The high similarity between the scene to be inferred and the user-defined template is calculated by the user-defined template of the multi-dimensional external feature label. The convolutional neural network is adopted to optimize the external area of the object to improve the sampling quality and computational performance of the sample pyramid structure. The results indicate that the proposed algorithm can accurately capture the significant target, achieve more ablation noise, and improve the visualization results. The proposed deep convolutional neural network optimization algorithm has good rapidity, data accuracy and robustness. The proposed algorithm can adapt to the calculation of more task scenes, display the redundant vision-related information of image conversion, enhance the powerful computing power, and further improve the computational efficiency and accuracy of convolutional networks, which has a high research significance for the study of image information conversion.
One distinguishing feature of BIM(Building Information Modeling) is the objectification of spatial elements independently, which makes it easy to represent spatial network. From this perspective, this study aimed to develop the spatial network analysis tool based on open BIM technologies. From the literature review, an object model of spatial network with nodes and links and a process model from construction to visualization were established. A prototype system implementing the proposed models, named SNAT(Spatial Network Analysis Tool), was developed in Java platform with using its open source packages. SNAT can create a spatial network from IFC-BIM model, calculate the indices of spatial network analysis, and visualize it with the representing types(map, graph, matrix and table).
네트워크와 IT기술의 발달로 실시간 가용 데이터의 수요가 촉진되었다. 특히 소득 증가와 고령화 사회 진입에 따른 의료서비스의 질적 향상으로 개인 건강관리를 위한 데이터 수요가 확대되어 의료기관과 관련기업은 다양하고 진화된 의료서비스를 제공하려는 시도를 하고 있다. 그 중에서도 건강검진 결과의 표현은 가장 기본적인 의료 서비스로서, 개인의 건강 기록을 데이터화하여 수검자에게 자신의 건강상태에 대한 이해가 되도록 표현되어야 한다. 그러나 건강검진 결과 표현을 위한 체계적인 프레임워크와 시각화 모델의 부재로 인하여 직관적인 건강데이터의 표현은 사용자에 의한 이해가 어려운 실정이다. 본 연구는 수검자에게 일관된 수치적 데이터 형식으로 제공되었던 기존방식을 지양하면서 사용자 개인의 건강검진 결과에 맞춘 다양한 데이터 표현방식을 정립하여 개발된 맞춤형 데이터 시각화의 모델과 프레임워크를 제안한다.
The network traffic prediction of a smart substation is key in strengthening its system security protection. To improve the performance of its traffic prediction, in this paper, we propose an improved gravitational search algorithm (IGSA), then introduce the IGSA into a wavelet neural network (WNN), iteratively optimize the initial connection weighting, scalability factor, and shift factor, and establish a smart substation network traffic prediction model based on the IGSA-WNN. A comparative analysis of the experimental results shows that the performance of the IGSA-WNN-based prediction model further improves the convergence velocity and prediction accuracy, and that the proposed model solves the deficiency issues of the original WNN, such as slow convergence velocity and ease of falling into a locally optimal solution; thus, it is a better smart substation network traffic prediction model.
적정기술연구 분야는 환경, 의료, 교육 및 에너지 등 다양한 주제를 포함하고 있다. 따라서, 한 분야의 연구자가 적정 기술 전체 분야에 대한 연구 동향을 파악하기에는 어려움이 있다. 소셜 네트워크 분석, 즉, 사회 연결망 분석은 네트워크에 어떤 전체적인 연결관계가 있는지를 분석하여 특정 관계망을 보기 쉽게 시각화 하거나 인사이트를 도출할 수 있는 방법이다. 이 논문에서는 소셜 네트워크 분석을 적정기술학회에서 개최한 2017-2019년까지의 적정기술 국제학회 초록집 자료를 이용하여 적정기술 분야의 학술 동향을 파악하고자 하였다. 적정기술학회에서 확보한 자료를 바탕으로 데이터 전처리 과정을 거쳐 공저자 네트워크를 분석하고 그와 관련된 통계적 지표를 해석하였다. 또한, 적정기술학회의 일반 현황 자료를 기반으로 연차별 발표자 및 연구 내용 변화를 분석하고 결과를 도출하였다.
Network based intrusion detection system is a computer network security tool. In this paper, we present an intrusion detection system based on Self-Organizing Maps (SOM) and Resilient Propagation Neural Network (RPROP) for visualizing and classifying intrusion and normal patterns. We introduce a cluster matching equation for finding principal associated components in component planes. We apply data from The Third International Knowledge Discovery and Data Mining Tools Competition (KDD cup'99) for training and testing our prototype. From our experimental results with different network data, our scheme archives more than 90 percent detection rate, and less than 5 percent false alarm rate in one SYN flooding and two port scanning attack types.
In this paper, we aimed to develop associative pattern recognizer based on neural network for aircraft identification. For obtaining invariant feature space description of an object regardless of its scale change and rotation, Log-polar sampling technique recently developed partly due to its similarity to the human visual system was introduced with Fourier transform post-processing. In addition to the recognition results, image recall was associatively performed and also used for the visualization of the recognition reliability. The multilayer perceptron model was learned by backpropagation algorithm.
도시계획, 이동통신계획, 교통계획, 환경조사, 재해${\cdot}$재난 관리 등의 다양한 분야에서 효율적인 시설물 관리를 위한 3차원 도시모델의 사용이 증가하고 있다. 특히 최근의 건물모델링은 CAD와 GIS의 기술로 통합되는 추세이다. 현재까지 연구되어 온 건물모델링은 주로 외부 시각화를 위한 것이었으나 보다 다양한 분야에서 활용하기 위해 건물 내부에 대한 모델링의 필요성과 중요성이 증가하고 있다. 3차원 건물모델링은 컴퓨터 그래픽스, CAD, GIS 분야에서 서로 다른 개념으로 발전되어 왔다. CAD와 컴퓨터 그래픽스 기반의 모델은 정밀한 시각화 표현 기능이 발전하였으나 객체에 대한 속성정보가 부족하며, GIS 기반의 모델은 속성정보와 위상기하학을 이용하는 공간 분석 및 연산 기능이 강력하므로 GIS와 CAD 통합된 모델링이 필요하다. 본 연구에서는 3차원 건물모델의 내부구조를 복원하기 위해서 건축물 관리대장에 포함되어 있는 CAD 설계도면을 이용하는 방법을 제시하고 있다. 기하학적 요소로 구성된 CAD 도면에 위상기하학적인 정보를 생성하고 내부 공간을 분할하여 3차원으로 복원한 뒤, 추가적인 속성정보를 건물 데이터베이스에 입력하였다. 오늘날 규모가 커지고 복잡해지는 건물 내부의 효과적이고 체계적인 3차원 공간분석 및 서비스 제공을 위한 GIS 네트워크 모델을 생성하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.