• Title/Summary/Keyword: Network Time Protocol

Search Result 1,446, Processing Time 0.027 seconds

Implementation of TTP Network System for Distributed Real-time Control Systems (분산 실시간 제어 시스템을 위한 TTP 네트워크 시스템의 구현)

  • Kim, Man-Ho;Son, Byeong-Jeom;Lee, Kyung-Chang;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.596-602
    • /
    • 2007
  • Recently, many ECUs(Electronic Control Units) have been used to enhance the vehicle safety, which leads to a distributed real-time control system. The distributed real-time control system requires to reduce the network delay for dependable real-time performance. There are two different paradigms by which a network protocol operates: event-triggered and time-triggered. This paper focuses on implementation of a time-triggered protocol. i.e. TTP/C(Time-Triggered Protocol/class C). This paper presents a design method of TTP control network and performance evaluation of distributed real-time control system using TTP protocol.

MAP : A Balanced Energy Consumption Routing Protocol for Wireless Sensor Networks

  • Azim, Mohamed Mostafa A.
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.295-306
    • /
    • 2010
  • Network lifetime is a critical issue in Wireless Sensor Networks (WSNs). In which, a large number of sensor nodes communicate together to perform a predetermined sensing task. In such networks, the network life time depends mainly on the lifetime of the sensor nodes constituting the network. Therefore, it is essential to balance the energy consumption among all sensor nodes to ensure the network connectivity. In this paper, we propose an energy-efficient data routing protocol for wireless sensor networks. Contrary to the protocol proposed in [6], that always selects the path with minimum hop count to the base station, our proposed routing protocol may choose a longer path that will provide better distribution of the energy consumption among the sensor nodes. Simulation results indicate clearly that compared to the routing protocol proposed in [6], our proposed protocol evenly distributes the energy consumption among the network nodes thus maximizing the network life time.

A Study on Routing Protocol using C-NODE for Mobile Ad-Hoc Networking (Mobile Ad-hoc Networking에서의 C-NODE를 이용한 Routing Protocol에 관한 연구)

  • Choi, Bong-Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.195-201
    • /
    • 2006
  • This thesis proposes hybrid routing protocol that mix proactive routing protocol and reactive routing protocol used in Ad hoc network. Proposed method is that establish special node offering network service of nods which construct Ad hoc network and do routing different from existing hybrid routing protocol, ZRP. Special node doing these parts is called C-node. Routing using C-node can accompany efficient routing by decreasing path institution time and flooding time than existing routing protocol.

  • PDF

Hybrid MAC Protocol Design for an Underwater Acoustic Network (수중음향통신망을 위한 하이브리드 MAC 프로토콜 설계)

  • Park, Jong-Won;Ko, Hak-Lim;Cho, A-Ra;Yun, Chang-Ho;Choi, Young-Chol;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2088-2096
    • /
    • 2009
  • This paper deals with hybrid MAC protocol design for underwater acoustic networks. The proposed MAC protocol has the cluster structure with a master node and slave nodes, and the hybrid network structure that combines a contention free period based on TDMA(Time Division Multiple Access) with a contention period. The suggested MAC protocol has a beacon packet for supervising network, a guard period between time slots for packet collision, time tag for estimation of propagation delay with a master node, the time synchronization of nodes, entering and leaving of network, and the communication method among nodes. In this paper, we adapt the proposed hybrid MAC protocol to AUV network, that is the representative mobile device of underwater acoustic network, and verify this protocol is applicable in real underwater acoustic network environment.

Protocol Implementation for Ethernet-Based Real-Time Communication Network (이더넷 기반 실시간 통신 네트워크 프로토콜 구현)

  • Kwon, Young-Woo;Nguyen, Dung Huy;Choi, Joon-Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.247-251
    • /
    • 2021
  • We propose a protocol for Ethernet-based industrial real-time communication networks. In the protocol, the master periodically transmits control frames to all slaves, and the ring-type network topology is selected to achieve high-speed transmission speed. The proposed protocol is implemented in the form of both firmware and Linux kernel modules. To improve the transmission speed, the MAC address table is disabled in the firmware implementation, and the NAPI function of the Ethernet driver is removed in the Linux kernel module implementation. A network experiment environment is built with four ARM processor-based embedded systems and network operation experiments are performed for various frame sizes. From the experimental results, it is verified that the proposed protocol normally operates, and the firmware implementation shows better transmission speed than the Linux kernel module implementation.

Network Coding-Based Fault Diagnosis Protocol for Dynamic Networks

  • Jarrah, Hazim;Chong, Peter Han Joo;Sarkar, Nurul I.;Gutierrez, Jairo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1479-1501
    • /
    • 2020
  • Dependable functioning of dynamic networks is essential for delivering ubiquitous services. Faults are the root causes of network outages. The comparison diagnosis model, which automates fault's identification, is one of the leading approaches to attain network dependability. Most of the existing research has focused on stationary networks. Nonetheless, the time-free comparison model imposes no time constraints on the system under considerations, and it suits most of the diagnosis requirements of dynamic networks. This paper presents a novel protocol that diagnoses faulty nodes in diagnosable dynamic networks. The proposed protocol comprises two stages, a testing stage, which uses the time-free comparison model to diagnose faulty neighbour nodes, and a disseminating stage, which leverages a Random Linear Network Coding (RLNC) technique to disseminate the partial view of nodes. We analysed and evaluated the performance of the proposed protocol under various scenarios, considering two metrics: communication overhead and diagnosis time. The simulation results revealed that the proposed protocol diagnoses different types of faults in dynamic networks. Compared with most related protocols, our proposed protocol has very low communication overhead and diagnosis time. These results demonstrated that the proposed protocol is energy-efficient, scalable, and robust.

Development of a Body Network System with GSEK/VDX Standards and CAN Protocol (OSEK/VDX 표준과 CAN 프로토콜을 사용한 차체 네트웍 시스템 개발)

  • 신민석;이우택;선우명호;한석영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.175-180
    • /
    • 2002
  • In order to satisfy the requirements of time reduction and cost saving for development of electronic control systems(ECU) in automotive industry, the applications of a standardized real-time operating system(RTOS) and a communication protocol to ECUs are increased. In this study, a body control module(BCM) that employs OSEK/VDX(open system and corresponding interfaces for automotive electronics/vehicle distributed executive) OS tour the RTOS and a controller area network(CAN) fur the communication protocol is designed, and the performances of the system are evaluated. The BCM controls doors, mirrors, and windows of the vehicle through the in-vehicle network. To identify all the transmitted and received control messages, a PC connected with the CAN communication protocol behaves as a CAN bus emulator. The control system based upon in-vehicle network improves the system stability and reduces the number of wiring harness. Furthermore it is easy to maintain and simple to add new features because the system is designed based on the standards of RTOS and communication protocol.

A Robust Wearable u-Healthcare Platform in Wireless Sensor Network

  • Lee, Seung-Chul;Chung, Wan-Young
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.465-474
    • /
    • 2014
  • Wireless sensor network (WSN) is considered to be one of the most important research fields for ubiquitous healthcare (u-healthcare) applications. Healthcare systems combined with WSNs have only been introduced by several pioneering researchers. However, most researchers collect physiological data from medical nodes located at static locations and transmit them within a limited communication range between a base station and the medical nodes. In these healthcare systems, the network link can be easily broken owing to the movement of the object nodes. To overcome this issue, in this study, the fast link exchange minimum cost forwarding (FLE-MCF) routing protocol is proposed. This protocol allows real-time multi-hop communication in a healthcare system based on WSN. The protocol is designed for a multi-hop sensor network to rapidly restore the network link when it is broken. The performance of the proposed FLE-MCF protocol is compared with that of a modified minimum cost forwarding (MMCF) protocol. The FLE-MCF protocol shows a good packet delivery rate from/to a fast moving object in a WSN. The designed wearable platform utilizes an adaptive linear prediction filter to reduce the motion artifacts in the original electrocardiogram (ECG) signal. Two filter algorithms used for baseline drift removal are evaluated to check whether real-time execution is possible on our wearable platform. The experiment results shows that the ECG signal filtered by adaptive linear prediction filter recovers from the distorted ECG signal efficiently.

An Energy-efficient Pair-wise Time Synchronization Protocol for Wireless Networks (에너지 효율적인 무선 네트워크용 상호 시각 동기화 프로토콜)

  • Bae, Shi-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.10
    • /
    • pp.1808-1815
    • /
    • 2016
  • TPSN(Timing-sync Protocol for Sensor Networks), the representative of time synchronization protocol, has been already developed to provide time synchronization among nodes in wireless sensor networks. Even though the TPSN's method has been referenced by so many other time synchronization schemes for resource-constrained networks like wireless sensor networks or low power personal area networks, it has some inefficiency in terms of power consumption and network-wide synchronization time (or called convergence time). The main reason is that each node in TPSN needs waiting delay to solve the collision problem due to simultaneous transmission among competing nodes, which causes more power consumption and longer network convergence time for a network-wide synchronization. In this paper an improved scheme is proposed by changing message exchange method among nodes. The proposed scheme not only shortens network-wide synchronization time, but also reduce collision traffic which lead to needless power consumption. The proposed scheme's performance has been evaluated and compared with an original scheme by simulation. The results are shown to be better than the original algorithm used in TPSN.

The medium access control protocol of virtual token bus network for real time communication (실시간 통신을 위한 가상토큰버스 통신망의 매체접근제어 프로토콜)

  • 정연괘
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.7
    • /
    • pp.76-91
    • /
    • 1996
  • In this paper, we proposed the new medium access control protocol for the virtual token bus netowrk. The network is applied to inter-processor communication network of large capacity digital switching system and digital mobile system with distributed control architecture. in the virtual token bus netowrk, the existing medium access control protocols hav ea switchove rtime overhead when traffic load is light or asymmetric according ot arbitration address of node that has message to send. The proposed protocol optimized average message delay using cyclic bus access chain to exclude switchover time of node that do not have message to send. Therefore it enhanced bus tuilization and average message delay that degrades the performance of real time communication netowrks. It showed that the proposed protocol is more enhacned than virtual token medium access control protocol and virtual token medium access control protocol iwth reservation through performance analysis.

  • PDF