• Title/Summary/Keyword: Network Routing Protocol

Search Result 1,135, Processing Time 0.06 seconds

Configuring Hosts to Auto-detect (IPv6, IPv6-in-IPv4, or IPv4) Network Connectivity

  • Hamarsheh, Ala;Goossens, Marnix;Alasem, Rafe
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.7
    • /
    • pp.1230-1251
    • /
    • 2011
  • This document specifies a new IPv6 deployment protocol called CHANC, which stands for Configuring Hosts to Auto-detect (IPv6, IPv6-in-IPv4, or IPv4) Network Connectivity. The main part is an application level tunneling protocol that allows Internet Service Providers (ISPs) to rapidly start deploying IPv6 service to their subscribers whom connected to the Internet via IPv4-only access networks. It carries IPv6 packets over HTTP protocol to be transmitted across IPv4-only network infrastructure. The key aspects of this protocol are: offers IPv6 connectivity via IPv4-only access networks, stateless operation, economical solution, assures most firewall traversal, and requires simple installation and automatic configuration at customers' hosts. All data packets and routing information of the IPv6 protocol will be carried over the IPv4 network infrastructure. A simple application and a pseudo network driver must be installed at the end-user's hosts to make them able to work with this protocol. Such hosts will be able to auto-detect the ISP available connectivity in the following precedence: native IPv6, IPv6-in-IPv4, or no IPv6 connectivity. Because the protocol does not require changing or upgrading customer edges, a minimal cost in the deployment to IPv6 service should be expected. The simulation analysis showed that the performance of CHANC is pretty near to those of native IPv6, 6rd, and IPv4 protocols. Also, the performance of CHANC is much better than that of D6across4 protocol.

Experimental Design of AODV Routing Protocol with Maximum Life Time (최대 수명을 갖는 AODV 라우팅 프로토콜 실험 설계)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.29-45
    • /
    • 2017
  • Ad hoc sensor network is characterized by decentralized structure and ad hoc deployment. Sensor networks have all basic features of ad hoc network except different degrees such as lower mobility and more stringent energy requirements. Existing protocols provide different tradeoffs among some desirable characteristics such as fault tolerance, distributed computation, robustness, scalability and reliability. wireless protocols suggested so far are very limited, generally focusing on communication to a single base station or on aggregating sensor data. The main reason having such restrictions is due to maximum lifetime to maintain network activities. The network lifetime is an important design metric in ad hoc networks. Since every node does a router role, it is not possible for other nodes to communicate with each other if some nodes do not work due to energy lack. In this paper, we suggest an experimental ad-hoc on-demand distance vector routing protocol to optimize the communication of energy of the network nodes.The load distribution avoids the choice of exhausted nodes at the route selection phase, thus balances the use of energy among nodes and maximizing the network lifetime. In transmission control phase, there is a balance between the choice of a high transmission power that lead to increase in the range of signal transmission thus reducing the number of hops and lower power levels that reduces the interference on the expense of network connectivity.

The Algorithm for an Energy-efficient Particle Sensor Applied LEACH Routing Protocol in Wireless Sensor Networks (무선센서네트워크에서 LEACH 라우팅 프로토콜을 적용한 파티클 센서의 에너지 효율적인 알고리즘)

  • Hong, Sung-Hwa;Kim, Hoon-Ki
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.13-21
    • /
    • 2009
  • The sensor nodes that form a wireless sensor network must perform both routing and sensing roles, since each sensor node always has a regular energy drain. The majority of sensors being used in wireless sensor networks are either unmanned or operated in environments that make them difficult for humans to approach. Furthermore, since many wireless sensor networks contain large numbers of sensors, thus requiring the sensor nodes to be small in size and cheap in price, the amount of power that can be supplied to the nodes and their data processing capacity are both limited. In this paper, we proposes the WSN(Wireless Sensor Network) algorithm which is applied sensor node that has low power consumption and efficiency measurement. Moreover, the efficiency routing protocol is proposed in this paper. The proposed algorithm reduces power consumption of sensor node data communication. It has not researched in LEACH(Low-Energy Adaptive Clustering Hierarchy) routing protocol. As controlling the active/sleep mode based on the measured data by sensor node, the energy consumption is able to be managed. In the event, the data is transferred to the local cluster head already set. The other side, this algorithm send the data as dependent on the information such as initial and present energy, and the number of rounds that are transformed into cluster header and then transferred. In this situation, the assignment of each node to cluster head evenly is very important. We selected cluster head efficiently and uniformly distributed the energy to each cluster node through the proposed algorithm. Consequently, this caused the extension of the WSN life time.

Design and Implementation of Double-Key based Light Weight Security Protocol in Ubiquitous Sensor Network (유비쿼터스 센서 네트워크에서 더블키를 이용한 경량 보안 프로토콜 설계 및 구현)

  • Zhung, Yon-Il;Lee, Sung-Young
    • The KIPS Transactions:PartC
    • /
    • v.14C no.3 s.113
    • /
    • pp.239-254
    • /
    • 2007
  • Ubiquitous computing supports environment to freely connect to network without restrictions of place and time. This environment enables easy access and sharing of information, but because of easy unauthorized accesses, specified security policy is needed. Especially, ubiquitous sensor network devices use limited power and are small in size, so, many restrictions on policies are bound to happen. This paper proposes double-key based light weight security protocol, independent to specific sensor OS, platform and routing protocol in ubiquitous sensor network. The proposed protocol supports safe symmetric key distribution, and allows security manager to change and manage security levels and keys. This had a strong merit by which small process can make large security measures. In the performance evaluation, the proposed light weight security protocol using double-key in ubiquitous sensor network allows relatively efficient low power security policy. It will be efficient to ubiquitous sensor network, such as smart of ace and smart home.

An Efficient Dynamic Network Status Update Mechanism for QoS Routing (QoS 라우팅을 위한 효율적인 동적 네트워크 상태 정보 갱신 방안)

  • Kim, Jee-Hye;Lee, Mee-Jeong
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.1
    • /
    • pp.65-76
    • /
    • 2002
  • QoS routing is a routing technique for finding feasible path that satisfies QoS requirements required by application programs. Since QoS routing determines such paths in terms of dynamic network state, it satisfies the requirement of applications and increases the utilization of the network. The overhead is, however, generated by routers to exchange the information of the dynamic state of network. In order to reduce this protocol overhead, a timer based update mechanism is proposed in which router checks the change of the network status periodically and network state information is exchanged if the change is greater than a certain value. Using large update period makes, though, routing performance irresponsive to the parameters which determine the update of the network state of the router. In addition to this, large update period may result in inaccurate network state information at routers and cause resource reservation failure. The resource reservation failure generates additional overhead to cancel the resource reservation of the part of the path. In this paper, we propose mechanisms enhancing the existing network state update policy with respect to these two problems. Performance of the proposed schemes are evaluated through a course of simulation.

ICARP: Interference-based Charging Aware Routing Protocol for Opportunistic Energy Harvesting Wireless Networks (ICARP: 기회적 에너지 하베스팅 무선 네트워크를 위한 간섭 기반 충전 인지 라우팅 프로토콜)

  • Kim, Hyun-Tae;Ra, In-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Recent researches on radio frequency energy harvesting networks(RF-EHNs) with limited energy resource like battery have been focusing on the development of a new scheme that can effectively extend the whole lifetime of a network to semipermanent. In order for considerable increase both in the amount of energy obtained from radio frequency energy harvesting and its charging effectiveness, it is very important to design a network that supports energy harvesting and data transfer simultaneously with the full consideration of various characteristics affecting the performance of a RF-EHN. In this paper, we proposes an interference-based charging aware routing protocol(ICARP) that utilizes interference information and charging time to maximize the amount of energy harvesting and to minimize the end-to-end delay from a source to the given destination node. To accomplish the research objectives, this paper gives a design of ICARP adopting new network metrics such as interference information and charging time to minimize end-to-end delay in energy harvesting wireless networks. The proposed method enables a RF-EHN to reduce the number of packet losses and retransmissions significantly for better energy consumption. Finally, simulation results show that the network performance in the aspects of packet transmission rate and end-to-end delay has enhanced with the comparison of existing routing protocols.

Distributed Binding Update Scheme for Fast Handoff in Non-Nested Network Mobility Environment (비 중첩 네트워크 이동성 환경에서 빠른 핸드오프를 위한 분산 바인딩 갱신 기법)

  • Kim, Hoon;Song, Ui-Sung
    • The Journal of Korean Association of Computer Education
    • /
    • v.10 no.5
    • /
    • pp.81-88
    • /
    • 2007
  • To support the movement of a mobile network consisting of several mobile nodes, the IETF NEMO working group proposed NEMO basic support protocol using bi-directional tunneling between the home agent and the mobile router. Since NEMO basic support protocol is based on bi-directional tunneling, all communications to and from mobile nodes are suffer from inefficient routing all the cases. To solve the routing inefficiency problem, several proposals are proposed. However, those proposals results in new problems, such as binding update storm and changes in existing protocol. Especially, binding update storm problem may cause the delay in binding update, this subsequently causes the difficulty for a real time service and the handoff delay on the movement of mobile network. In this paper, we propose a new binding update scheme which reduces binding update latency and the handoff delay through the distribution of the transmission time of binding update messages. The performance of the proposed scheme is also evaluated to demonstrate its efficiency. Simulation results show that the proposed scheme can efficiently reduce the binding update latency.

  • PDF

An Efficient Data Dissemination Protocol for Cluster-based Wireless Sensor Networks (클러스터 기반의 무선 센서네트워크에서 통신량을 줄인 데이터 보급방법)

  • Cho, Ji-Eun;Choe, Jong-Won
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.222-230
    • /
    • 2009
  • A sensor network is an important element of the ubiquitous and it consists of sensor fields that contain sensor nodes and sink nodes that collect data from sensor nodes. Since each sensor node has limited resources, one of the important issues covered in the past sensor network studies has been maximizing the usage of limited energy to extend network lifetime. However, most studies have only considered fixed sink nodes, which created various problems for cases with multiple mobile sink nodes. Accordingly, while maintaining routes to mobile sink nodes, this study aims to deploy the hybrid communication mode that combines single and multi-hop modes for intra-cluster and inter-cluster transmission to resolve the problem of failed data transmission to mobile sink nodes caused by disconnected routes. Furthermore, a 2-level hierarchical routing protocol was used to reduce the number of sensor nodes participating in data transmission, and cross-shape trajectory forwarding was employed in packet transmission to provide an efficient data dissemination method.

Modeling and Simulation of LEACH Protocol to Analyze DEVS Kernel-models in Sensor Networks

  • Nam, Su Man;Kim, Hwa Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.97-103
    • /
    • 2020
  • Wireless sensor networks collect and analyze sensing data in a variety of environments without human intervention. The sensor network changes its lifetime depending on routing protocols initially installed. In addition, it is difficult to modify the routing path during operating the network because sensors must consume a lot of energy resource. It is important to measure the network performance through simulation before building the sensor network into the real field. This paper proposes a WSN model for a low-energy adaptive clustering hierarchy protocol using DEVS kernel models. The proposed model is implemented with the sub models (i.e. broadcast model and controlled model) of the kernel model. Experimental results indicate that the broadcast model based WSN model showed lower CPU resource usage and higher message delivery than the broadcast model.

An Efficient Energy Usage of Wireless Sensor Network (무선 센서 네트워크에서 에너지의 효율적 사용방법)

  • Oh, Se-Jun;Hur, Sun;Lee, Gun-Woo
    • IE interfaces
    • /
    • v.23 no.2
    • /
    • pp.108-117
    • /
    • 2010
  • Wireless sensor network may be installed where it is hard to access or where one has to constantly gather data without any human's monitoring. Sensors which compose a sensor network are usually small with poor battery capacities and thus energy-efficient usage is very important because of difficulties in replacing or recharging the batteries to make the lifetime of the whole sensor network longer. LEACH protocol, a well-known hierarchical routing protocol, may resolve this problem by distributing the role of cluster header evenly to the sensor nodes in the whole area of network at each round. In this thesis, we introduce a variant of LEACH protocol which considers the distance between base station and sensors in the way that if a node is far from the base station then the probability that this node becomes a cluster header is low. Experiments to evaluate the energy efficiency and the ability to collect the information show that the proposed method in this paper has maintained much wider sensing area while keeping the energy efficiency same as LEACH.