• Title/Summary/Keyword: Network Routing Protocol

Search Result 1,135, Processing Time 0.037 seconds

A Forwarder Based Temperature Aware Routing Protocol in Wireless Body Area Networks

  • Beom-Su Kim;Ki-Il Kim;Babar Shah;Sana Ullah
    • Journal of Internet Technology
    • /
    • v.20 no.4
    • /
    • pp.1157-1166
    • /
    • 2019
  • A Wireless Body Area Network (WBAN) allows the seamless integration of miniaturized sensor nodes in or around a human body, which may cause damage to the surrounding body issue due to high temperature. Although various temperature aware routing protocols have been proposed to prevent temperature rise of sensor nodes, most of them accommodate single traffic transmission with no mobility support. We propose a Forwarder based Temperature Aware Routing Protocol (FTAR) that supports multiple traffic transmission for normal and critical data. Normal data is forwarded directly to the sink through forwarding nodes which are selected among mobile nodes attached to the arms and legs, while critical data is forwarded to the sink through static nodes attached to fixed body parts with no mobility. We conduct extensive simulations of FTAR, and conclude that FTAR has good performance in terms of hot spot generation ratio, hot spot duration time, and packet delivery ratio.

A Case for Using Service Availability to Characterize IP Backbone Topologies

  • Keralapura Ram;Moerschell Adam;Chuah Chen Nee;Iannaccone Gianluca;Bhattacharyya Supratik
    • Journal of Communications and Networks
    • /
    • v.8 no.2
    • /
    • pp.241-252
    • /
    • 2006
  • Traditional service-level agreements (SLAs), defined by average delay or packet loss, often camouflage the instantaneous performance perceived by end-users. We define a set of metrics for service availability to quantify the performance of Internet protocol (IP) backbone networks and capture the impact of routing dynamics on packet forwarding. Given a network topology and its link weights, we propose a novel technique to compute the associated service availability by taking into account transient routing dynamics and operational conditions, such as border gateway protocol (BGP) table size and traffic distributions. Even though there are numerous models for characterizing topologies, none of them provide insights on the expected performance perceived by end customers. Our simulations show that the amount of service disruption experienced by similar networks (i.e., with similar intrinsic properties such as average out-degree or network diameter) could be significantly different, making it imperative to use new metrics for characterizing networks. In the second part of the paper, we derive goodness factors based on service availability viewed from three perspectives: Ingress node (from one node to many destinations), link (traffic traversing a link), and network-wide (across all source-destination pairs). We show how goodness factors can be used in various applications and describe our numerical results.

Distance Aware Intelligent Clustering Protocol for Wireless Sensor Networks

  • Gautam, Navin;Pyun, Jae-Young
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.122-129
    • /
    • 2010
  • Energy conservation is one of the most important issues for evaluating the performance of wireless sensor network (WSN) applications. Generally speaking, hierarchical clustering protocols such as LEACH, LEACH-C, EEEAC, and BCDCP are more efficient in energy conservation than flat routing protocols. However, these typical protocols still have drawbacks of unequal and high energy depletion in cluster heads (CHs) due to the different transmission distance from each CH to the base station (BS). In order to minimize the energy consumption and increase the network lifetime, we propose a new hierarchical routing protocol, distance aware intelligent clustering protocol (DAIC), with the key concept of dividing the network into tiers and selecting the high energy CHs at the nearest distance from the BS. We have observed that a considerable amount of energy can be conserved by selecting CHs at the nearest distance from the BS. Also, the number of CHs is computed dynamically to avoid the selection of unnecessarily large number of CHs in the network. Our simulation results showed that the proposed DAIC outperforms LEACH and LEACH-C by 63.28% and 36.27% in energy conservation respectively. The distance aware CH selection method adopted in the proposed DAIC protocol can also be adapted to other hierarchical clustering protocols for the higher energy efficiency.

Sparse DTMNs routihg protocol for the M2M environment (Sparse M2M 환경을 위한 DTMNs 라우팅 프로토콜)

  • Wang, Jong Soo;Seo, Doo Ok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.11-18
    • /
    • 2014
  • Recently, ICT technology has been evolving towards an M2M (Machine to Machine) environment that allows communication between machine and machine from the communication between person and person, and now the IoT (Internet of Things) technology that connects all things without human intervention is receiving great attention. In such a network environment, the communication network between object and object as well as between person and person, and person and object is available which leads to the sharing of information between all objects, which is the essential technical element for us to move forward to the information service society of the era of future ubiquitous computing. On this paper, the protocol related to DTMNs in a Sparse M2M environment was applied and the improved routing protocol was applied by using the azimuth and density of the moving node in order to support a more efficient network environment to deliver the message between nodes in an M2M environment. This paper intends to verify the continuity of the study related to efficient routing protocols to provide an efficient network environment in the IoT and IoE (Internet of Everything) environment which is as of recently in the spotlight.

Context-aware Based Distributed Clustering for MANET (상황인식 기반의 MANET을 위한 분산 클러스터링 기법)

  • Mun, Chang-min;Lee, Kang-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.277-280
    • /
    • 2009
  • Mobile Ad-hoc Network(MANET) could provide the reliable monitoring and control of a variety of environments for remote place. Mobility of MANET would require the topology change frequently compared with a static network. To improve the routing protocol in MANET, energy efficient routing protocol would be required as well as considering the mobility would be needed. In this paper, we propose a new method that the CACH(Context-aware Clustering Hierarchy) algorithm, a hybrid and clustering-based protocol that could analyze the link cost from a source node to a destination node. The proposed analysis could help in defining the optimum depth of hierarchy architecture CACH utilize. The proposed CACH could use localized condition to enable adaptation and robustness for dynamic network topology protocol and this provide that our hierarchy to be resilient.

  • PDF

CASPER: Congestion Aware Selection of Path with Efficient Routing in Multimedia Networks

  • Obaidat, Mohammad S.;Dhurandher, Sanjay K.;Diwakar, Khushboo
    • Journal of Information Processing Systems
    • /
    • v.7 no.2
    • /
    • pp.241-260
    • /
    • 2011
  • In earlier days, most of the data carried on communication networks was textual data requiring limited bandwidth. With the rise of multimedia and network technologies, the bandwidth requirements of data have increased considerably. If a network link at any time is not able to meet the minimum bandwidth requirement of data, data transmission at that path becomes difficult, which leads to network congestion. This causes delay in data transmission and might also lead to packet drops in the network. The retransmission of these lost packets would aggravate the situation and jam the network. In this paper, we aim at providing a solution to the problem of network congestion in mobile ad hoc networks [1, 2] by designing a protocol that performs routing intelligently and minimizes the delay in data transmission. Our Objective is to move the traffic away from the shortest path obtained by a suitable shortest path calculation algorithm to a less congested path so as to minimize the number of packet drops during data transmission and to avoid unnecessary delay. For this we have proposed a protocol named as Congestion Aware Selection Of Path With Efficient Routing (CASPER). Here, a router runs the shortest path algorithm after pruning those links that violate a given set of constraints. The proposed protocol has been compared with two link state protocols namely, OSPF [3, 4] and OLSR [5, 6, 7, 8].The results achieved show that our protocol performs better in terms of network throughput and transmission delay in case of bulky data transmission.

An Analysis on the Effects of Cluster Leadership Rotation among Nodes Using Least Temperature Routing Protocol

  • Encarnacion, Nico;Yang, Hyunho
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.2
    • /
    • pp.104-108
    • /
    • 2014
  • The field of body sensor networks has attracted interest of many researchers due to its potential to revolutionize medicine. These sensors are usually implanted inside the human body and communicate among themselves. In the process of receiving, processing, or transmitting data, these devices produce heat. This heat damages the tissues surrounding the devices in the case of prolonged exposure. In this paper, to reduce this damages, we have improved and evaluated two protocols-the least temperature routing protocol and adaptive least temperature routing protocol-by implementing clustering as well as a leadership rotation algorithm. We used Castalia to simulate a basic body area network cluster composed of 6 nodes. A throughput application was used to simulate all the nodes sending data to one sink node. Simulations results shows that improved communication protocol with leadership rotation algorithm significantly reduce the energy consumption as compared to a scheme without leadership rotation algorithm.

An Efficient Core Migration Protocol for Tree Building in Mobile Ad Hoc Multicast Protocol (Ad Hoc네트워크에서 효율적인 코어-기반 멀티캐스트 트리 구축)

  • 이창순;김갑식
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.8 no.3
    • /
    • pp.99-104
    • /
    • 2003
  • Ad-hoc is the wireless network and consists of moving Hosts in environments which don't have a network-based Frame. Because ad-hoc is considered as broadcast network and network which has useful benefits, multicast muting protocols have been studied on ad-hoc network For this work we scrutinized ad-hoc and multicast routing protocols presented in previous works. And we presents a protocol for Ad-hoc network.

  • PDF

Energy-aware Tree Routing Protocol for Wireless Sensor Networks (센서 네트워크에서 에너지 효율성을 고려한 트리 라우팅 프로토콜)

  • Hwang, So-Young;Jin, Gwang-Ja;Shin, Chang-Sub;Kim, Bong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8B
    • /
    • pp.624-629
    • /
    • 2008
  • Many routing protocols have been proposed for sensor networks where energy awareness and reliability are essential design issues. This paper proposes an Energy-aware Tree Routing Protocol (ETRP) for Wireless Sensor Networks. The proposed scheme relates to reliable and energy efficient data routing by selecting a data transmission path in consideration of residual energy at each node to disperse energy consumption across the networks and reliably transmit the data through a detour path when there is link or node failure. Simulation results show that the proposed method outperformed traditional Tree Routing (TR) by 23.5% in network lifetime.

Performance Evaluation of MAC Protocols with Application to MANET Routing for Distributed Cognitive Radio Networks (분산 무선 인지 네트워크를 위한 MAC 프로토콜의 MANET 라우팅 적용 성능 분석)

  • Kwon, Sehoon;Kim, Hakwon;Kim, Bosung;Roh, Byeong-Hee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.4
    • /
    • pp.97-106
    • /
    • 2014
  • In this paper, we propose a design method to extend certain cognitive radio (CR) MAC protocols originally proposed only for the one hop applications in distributed CR networks to MANET routing protocols. Among several CR MAC protocols, the opportunistic MAC (called O-MAC) and the opportunistic period MAC (called OP-MAC) are considered, and AODV as MANET routing protocol is used. We implement the protocols using OPNET network simulator, and compare the performances in both MAC and AODV routing environments. With the experiments, we analyze the relationship between MAC and routing performances of the CR protocols.