• Title/Summary/Keyword: Network Robustness

Search Result 498, Processing Time 0.026 seconds

Efficient Visual Place Recognition by Adaptive CNN Landmark Matching

  • Chen, Yutian;Gan, Wenyan;Zhu, Yi;Tian, Hui;Wang, Cong;Ma, Wenfeng;Li, Yunbo;Wang, Dong;He, Jixian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4084-4104
    • /
    • 2021
  • Visual place recognition (VPR) is a fundamental yet challenging task of mobile robot navigation and localization. The existing VPR methods are usually based on some pairwise similarity of image descriptors, so they are sensitive to visual appearance change and also computationally expensive. This paper proposes a simple yet effective four-step method that achieves adaptive convolutional neural network (CNN) landmark matching for VPR. First, based on the features extracted from existing CNN models, the regions with higher significance scores are selected as landmarks. Then, according to the coordinate positions of potential landmarks, landmark matching is improved by removing mismatched landmark pairs. Finally, considering the significance scores obtained in the first step, robust image retrieval is performed based on adaptive landmark matching, and it gives more weight to the landmark matching pairs with higher significance scores. To verify the efficiency and robustness of the proposed method, evaluations are conducted on standard benchmark datasets. The experimental results indicate that the proposed method reduces the feature representation space of place images by more than 75% with negligible loss in recognition precision. Also, it achieves a fast matching speed in similarity calculation, satisfying the real-time requirement.

Multi-dimensional Analysis and Prediction Model for Tourist Satisfaction

  • Shrestha, Deepanjal;Wenan, Tan;Gaudel, Bijay;Rajkarnikar, Neesha;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.480-502
    • /
    • 2022
  • This work assesses the degree of satisfaction tourists receive as final recipients in a tourism destination based on the fact that satisfied tourists can make a significant contribution to the growth and continuous improvement of a tourism business. The work considers Pokhara, the tourism capital of Nepal as a prefecture of study. A stratified sampling methodology with open-ended survey questions is used as a primary source of data for a sample size of 1019 for both international and domestic tourists. The data collected through a survey is processed using a data mining tool to perform multi-dimensional analysis to discover information patterns and visualize clusters. Further, supervised machine learning algorithms, kNN, Decision tree, Support vector machine, Random forest, Neural network, Naive Bayes, and Gradient boost are used to develop models for training and prediction purposes for the survey data. To find the best model for prediction purposes, different performance matrices are used to evaluate a model for performance, accuracy, and robustness. The best model is used in constructing a learning-enabled model for predicting tourists as satisfied, neutral, and unsatisfied visitors. This work is very important for tourism business personnel, government agencies, and tourism stakeholders to find information on tourist satisfaction and factors that influence it. Though this work was carried out for Pokhara city of Nepal, the study is equally relevant to any other tourism destination of similar nature.

A vibration-based approach for detecting arch dam damage using RBF neural networks and Jaya algorithms

  • Ali Zar;Zahoor Hussain;Muhammad Akbar;Bassam A. Tayeh;Zhibin Lin
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.319-338
    • /
    • 2023
  • The study presents a new hybrid data-driven method by combining radial basis functions neural networks (RBF-NN) with the Jaya algorithm (JA) to provide effective structural health monitoring of arch dams. The novelty of this approach lies in that only one user-defined parameter is required and thus can increase its effectiveness and efficiency, as compared to other machine learning techniques that often require processing a large amount of training and testing model parameters and hyper-parameters, with high time-consuming. This approach seeks rapid damage detection in arch dams under dynamic conditions, to prevent potential disasters, by utilizing the RBF-NNN to seamlessly integrate the dynamic elastic modulus (DEM) and modal parameters (such as natural frequency and mode shape) as damage indicators. To determine the dynamic characteristics of the arch dam, the JA sequentially optimizes an objective function rooted in vibration-based data sets. Two case studies of hyperbolic concrete arch dams were carefully designed using finite element simulation to demonstrate the effectiveness of the RBF-NN model, in conjunction with the Jaya algorithm. The testing results demonstrated that the proposed methods could exhibit significant computational time-savings, while effectively detecting damage in arch dam structures with complex nonlinearities. Furthermore, despite training data contaminated with a high level of noise, the RBF-NN and JA fusion remained the robustness, with high accuracy.

Federated Deep Reinforcement Learning Based on Privacy Preserving for Industrial Internet of Things (산업용 사물 인터넷을 위한 프라이버시 보존 연합학습 기반 심층 강화학습 모델)

  • Chae-Rim Han;Sun-Jin Lee;Il-Gu Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1055-1065
    • /
    • 2023
  • Recently, various studies using deep reinforcement learning (deep RL) technology have been conducted to solve complex problems using big data collected at industrial internet of things. Deep RL uses reinforcement learning"s trial-and-error algorithms and cumulative compensation functions to generate and learn its own data and quickly explore neural network structures and parameter decisions. However, studies so far have shown that the larger the size of the learning data is, the higher are the memory usage and search time, and the lower is the accuracy. In this study, model-agnostic learning for efficient federated deep RL was utilized to solve privacy invasion by increasing robustness as 55.9% and achieve 97.8% accuracy, an improvement of 5.5% compared with the comparative optimization-based meta learning models, and to reduce the delay time by 28.9% on average.

A Remote Applications Monitoring System using JINI (JINI 기반 원격 응용 모니터링 시스템)

  • 임성훈;송무찬;김정선
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.3
    • /
    • pp.221-230
    • /
    • 2004
  • In general, remote monitoring systems monitor the status of distributed hosts and/or applications in real-time for diverse managerial purposes. However, most of the extant systems have a few undesirable problems. First of all, they are platform-dependent and are not resilient to network and/or host failures. Moreover, they normally focus on the resource usage trends in monitored hosts, rather than on the status change of the applications running on them. We strongly believe that the latter has more direct and profound effect on the resource usage patterns on each host. In this paper, we present the design and implementation of the Remote Applications Monitoring System (RAMS) that enables us to effectively manage distributed applications through a real-time monitoring of their respective resource usages. The RAMS is a centralized system that consists of many distributed agents and a single centralized manager. An agent on each host is in charge of collecting and reporting the status of local applications. The manager handles agent registration and provides a central access point to the selection and monitoring of distributed applications. The salient features of the system include robustness and portability The adoption of JINI greatly facilitates an automatic recovery from partial network failure and host failure.

Evolutionary Optimization of Neurocontroller for Physically Simulated Compliant-Wing Ornithopter

  • Shim, Yoonsik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.25-33
    • /
    • 2019
  • This paper presents a novel evolutionary framework for optimizing a bio-inspired fully dynamic neurocontroller for the maneuverable flapping flight of a simulated bird-sized ornithopter robot which takes advantage of the morphological computation and mechansensory feedback to improve flight stability. In order to cope with the difficulty of generating robust flapping flight and its maneuver, the wing of robot is modelled as a series of sub-plates joined by passive torsional springs, which implements the simplified version of feathers attached to the forearm skeleton. The neural controller is designed to have a bilaterally symmetric structure which consists of two fully connected neural network modules receiving mirrored sensory inputs from a series of flight navigation sensors as well as feather mechanosensors to let them participate in pattern generation. The synergy of wing compliance and its sensory reflexes gives a possibility that the robot can feel and exploit aerodynamic forces on its wings to potentially contribute to the agility and stability during flight. The evolved robot exhibited target-following flight maneuver using asymmetric wing movements as well as its tail, showing robustness to external aerodynamic disturbances.

A Congestion Control Algorithm for the fairness Improvement of TCP Vegas (TCP Vegas의 공정성 향상을 위한 혼잡 제어 알고리즘)

  • 오민철;송병훈;정광수
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.3
    • /
    • pp.269-279
    • /
    • 2004
  • The most important factor influencing the robustness of the Internet Is the end-to-end TCP congestion control. However, the congestion control scheme of TCP Reno, the most popular TCP version on the Internet, employs passive congestion indication. It makes worse the network congestion. Recently, Brakmo and Peterson have proposed a new version of TCP, which is named TCP Vegas, with a fundamentally different congestion control scheme from that of the Reno. Many studies indicate that the Vegas is able to achieve better throughput and higher stability than the Reno. But there are two unfairness problems in Vegas. These problems hinder the spread of the Vegas in current Internet. In this paper, in order to solve these unfairness problems, we propose a new congestion control algorithm called TCP PowerVegas. The existing Vegas depends mainly only on the rtt(round trip time), but the proposed PowerVegas use the new congestion control scheme combined the Information on the rtt with the information on the packet loss. Therefore the PowerVegas performs the congestion control more competitively than the Vegas. Thus, the PowerVegas is able to solve effectively these unfairness problems which the Vegas has experienced. To evaluate the proposed approach, we compare the performance among PowerVegas, Reno and Vegas under same network environment. Using simulation, the PowerVegas is able to achieve better throughput and higher stability than the Reno and is shown to achieve much better fairness than the existing Vegas.

Automatic Detection and Classification of Rib Fractures on Thoracic CT Using Convolutional Neural Network: Accuracy and Feasibility

  • Qing-Qing Zhou;Jiashuo Wang;Wen Tang;Zhang-Chun Hu;Zi-Yi Xia;Xue-Song Li;Rongguo Zhang;Xindao Yin;Bing Zhang;Hong Zhang
    • Korean Journal of Radiology
    • /
    • v.21 no.7
    • /
    • pp.869-879
    • /
    • 2020
  • Objective: To evaluate the performance of a convolutional neural network (CNN) model that can automatically detect and classify rib fractures, and output structured reports from computed tomography (CT) images. Materials and Methods: This study included 1079 patients (median age, 55 years; men, 718) from three hospitals, between January 2011 and January 2019, who were divided into a monocentric training set (n = 876; median age, 55 years; men, 582), five multicenter/multiparameter validation sets (n = 173; median age, 59 years; men, 118) with different slice thicknesses and image pixels, and a normal control set (n = 30; median age, 53 years; men, 18). Three classifications (fresh, healing, and old fracture) combined with fracture location (corresponding CT layers) were detected automatically and delivered in a structured report. Precision, recall, and F1-score were selected as metrics to measure the optimum CNN model. Detection/diagnosis time, precision, and sensitivity were employed to compare the diagnostic efficiency of the structured report and that of experienced radiologists. Results: A total of 25054 annotations (fresh fracture, 10089; healing fracture, 10922; old fracture, 4043) were labelled for training (18584) and validation (6470). The detection efficiency was higher for fresh fractures and healing fractures than for old fractures (F1-scores, 0.849, 0.856, 0.770, respectively, p = 0.023 for each), and the robustness of the model was good in the five multicenter/multiparameter validation sets (all mean F1-scores > 0.8 except validation set 5 [512 x 512 pixels; F1-score = 0.757]). The precision of the five radiologists improved from 80.3% to 91.1%, and the sensitivity increased from 62.4% to 86.3% with artificial intelligence-assisted diagnosis. On average, the diagnosis time of the radiologists was reduced by 73.9 seconds. Conclusion: Our CNN model for automatic rib fracture detection could assist radiologists in improving diagnostic efficiency, reducing diagnosis time and radiologists' workload.

Predictive Clustering-based Collaborative Filtering Technique for Performance-Stability of Recommendation System (추천 시스템의 성능 안정성을 위한 예측적 군집화 기반 협업 필터링 기법)

  • Lee, O-Joun;You, Eun-Soon
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.119-142
    • /
    • 2015
  • With the explosive growth in the volume of information, Internet users are experiencing considerable difficulties in obtaining necessary information online. Against this backdrop, ever-greater importance is being placed on a recommender system that provides information catered to user preferences and tastes in an attempt to address issues associated with information overload. To this end, a number of techniques have been proposed, including content-based filtering (CBF), demographic filtering (DF) and collaborative filtering (CF). Among them, CBF and DF require external information and thus cannot be applied to a variety of domains. CF, on the other hand, is widely used since it is relatively free from the domain constraint. The CF technique is broadly classified into memory-based CF, model-based CF and hybrid CF. Model-based CF addresses the drawbacks of CF by considering the Bayesian model, clustering model or dependency network model. This filtering technique not only improves the sparsity and scalability issues but also boosts predictive performance. However, it involves expensive model-building and results in a tradeoff between performance and scalability. Such tradeoff is attributed to reduced coverage, which is a type of sparsity issues. In addition, expensive model-building may lead to performance instability since changes in the domain environment cannot be immediately incorporated into the model due to high costs involved. Cumulative changes in the domain environment that have failed to be reflected eventually undermine system performance. This study incorporates the Markov model of transition probabilities and the concept of fuzzy clustering with CBCF to propose predictive clustering-based CF (PCCF) that solves the issues of reduced coverage and of unstable performance. The method improves performance instability by tracking the changes in user preferences and bridging the gap between the static model and dynamic users. Furthermore, the issue of reduced coverage also improves by expanding the coverage based on transition probabilities and clustering probabilities. The proposed method consists of four processes. First, user preferences are normalized in preference clustering. Second, changes in user preferences are detected from review score entries during preference transition detection. Third, user propensities are normalized using patterns of changes (propensities) in user preferences in propensity clustering. Lastly, the preference prediction model is developed to predict user preferences for items during preference prediction. The proposed method has been validated by testing the robustness of performance instability and scalability-performance tradeoff. The initial test compared and analyzed the performance of individual recommender systems each enabled by IBCF, CBCF, ICFEC and PCCF under an environment where data sparsity had been minimized. The following test adjusted the optimal number of clusters in CBCF, ICFEC and PCCF for a comparative analysis of subsequent changes in the system performance. The test results revealed that the suggested method produced insignificant improvement in performance in comparison with the existing techniques. In addition, it failed to achieve significant improvement in the standard deviation that indicates the degree of data fluctuation. Notwithstanding, it resulted in marked improvement over the existing techniques in terms of range that indicates the level of performance fluctuation. The level of performance fluctuation before and after the model generation improved by 51.31% in the initial test. Then in the following test, there has been 36.05% improvement in the level of performance fluctuation driven by the changes in the number of clusters. This signifies that the proposed method, despite the slight performance improvement, clearly offers better performance stability compared to the existing techniques. Further research on this study will be directed toward enhancing the recommendation performance that failed to demonstrate significant improvement over the existing techniques. The future research will consider the introduction of a high-dimensional parameter-free clustering algorithm or deep learning-based model in order to improve performance in recommendations.

Flexible Disjoint Multipath Routing Protocol Using Local Decision in Wireless Sensor Networks (무선 센서 네트워크에서 지역 결정을 통한 유연한 분리형 다중경로 라우팅 프로토콜)

  • Jung, Kwansoo;Yeom, Heegyun;Park, Hosung;Lee, Jeongcheol;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.11
    • /
    • pp.911-923
    • /
    • 2013
  • Multipath routing is one of challenging issues for improving the reliability of end-to-end data delivery in wireless sensor networks. Recently, a disjointedness and management of path have been studying to enhance the robustness and efficiency of the multipath routing. However, previous multipath routing protocols exploit the disjointed multipath construction method that is not to consider the wireless communication environment. In addition, if a path failures is occurred due to the node or link failures in the irregular network environment, they maintain the multipath through the simple method that to construct a new extra path. Even some of them have no a method. In order to cope with the insufficiency of path management, a hole detouring scheme, to bypass the failures area and construct the new paths, was proposed. However, it also has the problem that requires a heavy cost and a delivery suspension to the some or all paths in the hole detouring process due to the centralized and inflexible path management. Due to these limitations and problems, the previous protocols may lead to the degradation of data delivery reliability and the long delay of emergency data delivery. Thus, we propose a flexible disjoint multipath routing protocol which constructs the radio disjoint multipath by considering irregular and constrained wireless sensor networks. It also exploits a localized management based on the path priority in order to efficiently maintain the flexible disjoint multipath. We perform the simulation to evaluate the performance of the proposed method.