• Title/Summary/Keyword: Network Performance

Search Result 13,994, Processing Time 0.049 seconds

The Effect on Air Transport Sector by Korea-China FTA and Aviation Policy Direction of Korea (한·중 FTA가 항공운송 부문에 미치는 영향과 우리나라 항공정책의 방향)

  • Lee, Kang-Bin
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.32 no.1
    • /
    • pp.83-138
    • /
    • 2017
  • Korea-China FTA entered into force on the 20th of December 2015, and one year elapsed after its effectuation as the FTA with China, our country's largest trading partner. Therefore, this study looks at the trends of air transport trade between Korea and China, and examines the contents of concessions to the air transport services sector in Korea-China FTA, and analyzes the impact on the air transport sector by Korea-China FTA, and proposes our country's aviation policy direction in order to respond to such impact. In 2016 the trends of air transport trade between Korea and China are as follows : The export amount of air transport trade to China was 40.03 billion dollars, down by 9.3% from the last year, and occupied 32.2% of the total export amount to China. The import amount of air transport trade from China was 24.26 billion dollars, down by 9.1% from the last year, and occupied 27.7% of the total import amount from China. The contents of concessions to the air transport services sector in Korea-China FTA are as follows : China made concessions to the aircraft repair and maintenance services and the computer reservation system services with limitations on market access and national treatment in the air transport services sector of the China Schedule of Specific Commitments of Korea-China FTA Chapter 8 Annex. Korea made concessions to the computer reservation system services, selling and marketing of air transport services, and aircraft repair and maintenance without limitations on market access and national treatment in the air transport services sector of the Korea Schedule of Specific Commitments of Korea-China FTA Chapter 8 Annex. The impact on the air transport sector by Korea-China FTA are as follows : As for the impact on the air passenger market, in 2016 the arrival passengers of the international flight from China were 9.96 million, up by 20.6% from the last year, and the departure passengers to China were 9.90 million, up by 34.8% from the last year. As for the impact on the air cargo market, in 2016 the exported goods volumes of air cargo to China were 105,220.2 tons, up by 6.6% from the last year, and imported goods volumes from China were 133,750.9 tons, up by 12.3% from the last year. Among the major items of exported air cargo to China, the exported goods volumes of benefited items in the Tariff Schedule of China of Korea-China FTA were increased, and among the major items of imported air cargo from China, the imported goods volumes of benefited items in the Tariff Schedule of Korea of Korea-China FTA were increased. As for the impact on the logistics market, in 2016 the handling performance of exported air cargo to China by domestic forwarders were 119,618 tons, down by 2.1% from the last year, and the handling performance of imported air cargo from China were 79,430 tons, down by 4.4% from the last year. In 2016 the e-commerce export amount to China were 109.16 million dollars, up by 27.7% from the last year, and the e-commerce import amount from China were 89.43 million dollars, up by 72% from the last year. The author proposes the aviation policy direction of Korea according to Korea-China FTA as follows : First, the open skies between Korea and China shall be pushed ahead. In June 2006 Korea and China concluded the open skies agreement within the scope of the third freedom and fourth freedom of the air for passenger and cargo in Sandong Province and Hainan Province of China, and agreed the full open skies of flights between the two countries from the summer season in 2010. However, China protested against the interpretation of the draft of the memorandum of understanding to the air services agreement, therefore the further open skies did not take place. Through the separate aviation talks with China from Korea-China FTA, the gradual and selective open skies of air passenger market and air cargo market shall be pushed ahead. Second, the competitiveness of air transport industry and airport shall be secured. As for the strengthening methods of the competitiveness of Korea's air transport industry, the support system for the strengthening of national air carriers' competitiveness shall be prepared, and the new basis for competition of national air carriers shall be made, and the strategic network based on national interest shall be built. As for the strengthening methods of the competitiveness of Korea's airports, particularly Incheon Airport, the competitiveness of the network for aviation demand creation shall be strengthened, and the airport facilities and safety infrastructure shall be expanded, and the new added value through the airport shall be created, and the world's No.1 level of services shall be maintained. Third, the competitiveness of aviation logistics enterprises shall be strengthened. As for the strengthening methods of the competitiveness of Korea's aviation logistics enterprises, as the upbringing strategy of higher added value in response to the industry trends changes, the new logistics market shall be developed, and the logistics infrastructure shall be expanded, and the logistics professionals shall be trained. Additionally, as the expanding strategy of global logistics market, the support system for overseas investment of logistics enterprises shall be built, and according to expanding the global transport network, the international cooperation shall be strengthened, and the network infrastructure shall be secured. As for the strengthening methods of aviation logistics competitiveness of Incheon Airport, the enterprises' demand of moving in the logistics complex shall be responded, and the comparative advantage in the field of new growth cargo shall be preoccupied, and the logistics hub's capability shall be strengthened, and the competitiveness of cargo processing speed in the airport shall be advanced. Forth, in the subsequent negotiation of Korea-China FTA, the further opening of air transport services sector shall be secured. In the subsequent negotiation being initiated within two years after entry into force of Korea-China FTA, it is necessary to ask for the further opening of the concessions of computer reservation system services, and aircraft repair and maintenance services in which the concessions level of air transport services sector by China is insufficient compared to the concessions level in the existing FTA concluded by China. In conclusion, in order to respond to the impact on Korea's air passenger market, air cargo market and aviation logistics market by Korea-China FTA, the following policy tasks shall be pushed ahead : Taking into consideration of national air carriers' competitiveness and nation's benefits, the gradual and selective open skies shall be pushed ahead, and the support system to strengthen the competitiveness of air transport industry and airport shall be built, and entry into aviation logistics market by logistics enterprises shall be expanded, and the preparations to ask for the further opening of air transport services sector, low in the concessions level by China shall be made.

  • PDF

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF

Korean Sentence Generation Using Phoneme-Level LSTM Language Model (한국어 음소 단위 LSTM 언어모델을 이용한 문장 생성)

  • Ahn, SungMahn;Chung, Yeojin;Lee, Jaejoon;Yang, Jiheon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.71-88
    • /
    • 2017
  • Language models were originally developed for speech recognition and language processing. Using a set of example sentences, a language model predicts the next word or character based on sequential input data. N-gram models have been widely used but this model cannot model the correlation between the input units efficiently since it is a probabilistic model which are based on the frequency of each unit in the training set. Recently, as the deep learning algorithm has been developed, a recurrent neural network (RNN) model and a long short-term memory (LSTM) model have been widely used for the neural language model (Ahn, 2016; Kim et al., 2016; Lee et al., 2016). These models can reflect dependency between the objects that are entered sequentially into the model (Gers and Schmidhuber, 2001; Mikolov et al., 2010; Sundermeyer et al., 2012). In order to learning the neural language model, texts need to be decomposed into words or morphemes. Since, however, a training set of sentences includes a huge number of words or morphemes in general, the size of dictionary is very large and so it increases model complexity. In addition, word-level or morpheme-level models are able to generate vocabularies only which are contained in the training set. Furthermore, with highly morphological languages such as Turkish, Hungarian, Russian, Finnish or Korean, morpheme analyzers have more chance to cause errors in decomposition process (Lankinen et al., 2016). Therefore, this paper proposes a phoneme-level language model for Korean language based on LSTM models. A phoneme such as a vowel or a consonant is the smallest unit that comprises Korean texts. We construct the language model using three or four LSTM layers. Each model was trained using Stochastic Gradient Algorithm and more advanced optimization algorithms such as Adagrad, RMSprop, Adadelta, Adam, Adamax, and Nadam. Simulation study was done with Old Testament texts using a deep learning package Keras based the Theano. After pre-processing the texts, the dataset included 74 of unique characters including vowels, consonants, and punctuation marks. Then we constructed an input vector with 20 consecutive characters and an output with a following 21st character. Finally, total 1,023,411 sets of input-output vectors were included in the dataset and we divided them into training, validation, testsets with proportion 70:15:15. All the simulation were conducted on a system equipped with an Intel Xeon CPU (16 cores) and a NVIDIA GeForce GTX 1080 GPU. We compared the loss function evaluated for the validation set, the perplexity evaluated for the test set, and the time to be taken for training each model. As a result, all the optimization algorithms but the stochastic gradient algorithm showed similar validation loss and perplexity, which are clearly superior to those of the stochastic gradient algorithm. The stochastic gradient algorithm took the longest time to be trained for both 3- and 4-LSTM models. On average, the 4-LSTM layer model took 69% longer training time than the 3-LSTM layer model. However, the validation loss and perplexity were not improved significantly or became even worse for specific conditions. On the other hand, when comparing the automatically generated sentences, the 4-LSTM layer model tended to generate the sentences which are closer to the natural language than the 3-LSTM model. Although there were slight differences in the completeness of the generated sentences between the models, the sentence generation performance was quite satisfactory in any simulation conditions: they generated only legitimate Korean letters and the use of postposition and the conjugation of verbs were almost perfect in the sense of grammar. The results of this study are expected to be widely used for the processing of Korean language in the field of language processing and speech recognition, which are the basis of artificial intelligence systems.

A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm (Word2Vec을 활용한 제품군별 시장규모 추정 방법에 관한 연구)

  • Jung, Ye Lim;Kim, Ji Hui;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.1-21
    • /
    • 2020
  • With the rapid development of artificial intelligence technology, various techniques have been developed to extract meaningful information from unstructured text data which constitutes a large portion of big data. Over the past decades, text mining technologies have been utilized in various industries for practical applications. In the field of business intelligence, it has been employed to discover new market and/or technology opportunities and support rational decision making of business participants. The market information such as market size, market growth rate, and market share is essential for setting companies' business strategies. There has been a continuous demand in various fields for specific product level-market information. However, the information has been generally provided at industry level or broad categories based on classification standards, making it difficult to obtain specific and proper information. In this regard, we propose a new methodology that can estimate the market sizes of product groups at more detailed levels than that of previously offered. We applied Word2Vec algorithm, a neural network based semantic word embedding model, to enable automatic market size estimation from individual companies' product information in a bottom-up manner. The overall process is as follows: First, the data related to product information is collected, refined, and restructured into suitable form for applying Word2Vec model. Next, the preprocessed data is embedded into vector space by Word2Vec and then the product groups are derived by extracting similar products names based on cosine similarity calculation. Finally, the sales data on the extracted products is summated to estimate the market size of the product groups. As an experimental data, text data of product names from Statistics Korea's microdata (345,103 cases) were mapped in multidimensional vector space by Word2Vec training. We performed parameters optimization for training and then applied vector dimension of 300 and window size of 15 as optimized parameters for further experiments. We employed index words of Korean Standard Industry Classification (KSIC) as a product name dataset to more efficiently cluster product groups. The product names which are similar to KSIC indexes were extracted based on cosine similarity. The market size of extracted products as one product category was calculated from individual companies' sales data. The market sizes of 11,654 specific product lines were automatically estimated by the proposed model. For the performance verification, the results were compared with actual market size of some items. The Pearson's correlation coefficient was 0.513. Our approach has several advantages differing from the previous studies. First, text mining and machine learning techniques were applied for the first time on market size estimation, overcoming the limitations of traditional sampling based- or multiple assumption required-methods. In addition, the level of market category can be easily and efficiently adjusted according to the purpose of information use by changing cosine similarity threshold. Furthermore, it has a high potential of practical applications since it can resolve unmet needs for detailed market size information in public and private sectors. Specifically, it can be utilized in technology evaluation and technology commercialization support program conducted by governmental institutions, as well as business strategies consulting and market analysis report publishing by private firms. The limitation of our study is that the presented model needs to be improved in terms of accuracy and reliability. The semantic-based word embedding module can be advanced by giving a proper order in the preprocessed dataset or by combining another algorithm such as Jaccard similarity with Word2Vec. Also, the methods of product group clustering can be changed to other types of unsupervised machine learning algorithm. Our group is currently working on subsequent studies and we expect that it can further improve the performance of the conceptually proposed basic model in this study.

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (비정형 텍스트 분석을 활용한 이슈의 동적 변이과정 고찰)

  • Lim, Myungsu;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Owing to the extensive use of Web media and the development of the IT industry, a large amount of data has been generated, shared, and stored. Nowadays, various types of unstructured data such as image, sound, video, and text are distributed through Web media. Therefore, many attempts have been made in recent years to discover new value through an analysis of these unstructured data. Among these types of unstructured data, text is recognized as the most representative method for users to express and share their opinions on the Web. In this sense, demand for obtaining new insights through text analysis is steadily increasing. Accordingly, text mining is increasingly being used for different purposes in various fields. In particular, issue tracking is being widely studied not only in the academic world but also in industries because it can be used to extract various issues from text such as news, (SocialNetworkServices) to analyze the trends of these issues. Conventionally, issue tracking is used to identify major issues sustained over a long period of time through topic modeling and to analyze the detailed distribution of documents involved in each issue. However, because conventional issue tracking assumes that the content composing each issue does not change throughout the entire tracking period, it cannot represent the dynamic mutation process of detailed issues that can be created, merged, divided, and deleted between these periods. Moreover, because only keywords that appear consistently throughout the entire period can be derived as issue keywords, concrete issue keywords such as "nuclear test" and "separated families" may be concealed by more general issue keywords such as "North Korea" in an analysis over a long period of time. This implies that many meaningful but short-lived issues cannot be discovered by conventional issue tracking. Note that detailed keywords are preferable to general keywords because the former can be clues for providing actionable strategies. To overcome these limitations, we performed an independent analysis on the documents of each detailed period. We generated an issue flow diagram based on the similarity of each issue between two consecutive periods. The issue transition pattern among categories was analyzed by using the category information of each document. In this study, we then applied the proposed methodology to a real case of 53,739 news articles. We derived an issue flow diagram from the articles. We then proposed the following useful application scenarios for the issue flow diagram presented in the experiment section. First, we can identify an issue that actively appears during a certain period and promptly disappears in the next period. Second, the preceding and following issues of a particular issue can be easily discovered from the issue flow diagram. This implies that our methodology can be used to discover the association between inter-period issues. Finally, an interesting pattern of one-way and two-way transitions was discovered by analyzing the transition patterns of issues through category analysis. Thus, we discovered that a pair of mutually similar categories induces two-way transitions. In contrast, one-way transitions can be recognized as an indicator that issues in a certain category tend to be influenced by other issues in another category. For practical application of the proposed methodology, high-quality word and stop word dictionaries need to be constructed. In addition, not only the number of documents but also additional meta-information such as the read counts, written time, and comments of documents should be analyzed. A rigorous performance evaluation or validation of the proposed methodology should be performed in future works.

Analysis on elements of policy changes in character industry (캐릭터산업의 정책변인연구)

  • Han, Chang-Wan
    • Cartoon and Animation Studies
    • /
    • s.33
    • /
    • pp.597-616
    • /
    • 2013
  • Character industry is not only knowledge-based industry chiefly with copyrights but also motive power for creative economy to take a role functionally over the fields of industries because it has industrial characteristic as complement product to promote sale value in manufacturing industry and service industry and increase profit on sales. Since 2003, the national policy related to character has aimed to maximize effect among connected industries, extend its business abroad, enforce copyrights through the improvement of marketing system, develop industrial infrastructure through raising quality of character products. With the result of this policy, the successful cases of connected contents have been crystallized and domestic character industry has stepped up methodically since 2007. It is needed to reset the scales of character industry and industrial stats because there are more know-how of self industry promotion and more related characters through strategy of market departmentalization starting with cartoon, animation, games, novels, movies and musicals. Especially, The Korea government set our target for 'Global Top Five Character Power' since 2009 and has started to carry out to find global star characters, support to establish network among connected industries, diversify promotion channels, and develop licensing business. Particularly, since 2013, There have been prospered the indoor character theme park with time management just like character experimental marketing or Kids cafes using characters, the demand market of digital character focusing on SNS emoticon, and the performance market for character musical consistently. Moreover, The domestic and foreign illegal black markets on off-line have been enlarged, so we need another policy alternative. To prepare for the era of exploding character demand market and diversifying platform, it is needed to set up a solid strategy that is required the elements of policy changes in character industry to vitalize character industry and support new character design and connected contents. the following shows that the elements of policy changes related to the existing policy, the current position of market. Nowadays, the elements of policy changes in domestic character industry are that variety of consumers in the digital character market according to platform diversification, Convergence contents of character goods for the Korean waves, legalization of the illegal black contents market, and controling the tendency of consumers in departmentalized market. This can help find the policy issue entirely deferent with the existing character powers like US, Japan or Europe. In its final analysis, the alternatives are the promotion of models with contract copyrights of domestic and foreign connected contents, the diversification of profit models of platform economy, the additive development of target market related to enlarging the Korean waves, and the strategy of character market for the age-specific tendency according to developing character demand market.

A Study on Outplacement Countermeasure and Retention Level Examination Analysis about Outplacement Competency of Special Security Government Official (특정직 경호공무원의 전직역량에 대한 보유수준 분석 및 전직지원방안 연구)

  • Kim, Beom-Seok
    • Korean Security Journal
    • /
    • no.33
    • /
    • pp.51-80
    • /
    • 2012
  • This study is to summarize main contents which was mentioned by Beomseok Kim' doctoral dissertation. The purpose of this study focuses on presenting the outplacement countermeasure and retention level examination analysis about outplacement competency of special security government official through implement of questionnaire method. The questionnaire for retention level examination including four groups of outplacement competency and twenty subcategories was implemented in the object of six hundered persons relevant to outplacement more than forty age and five grade administration official of special security government officials, who have outplacement experiences as outplacement successors, outplacement losers, and outplacement expectants, in order to achieve this research purpose effectively. The questionnaire examination items are four groups of outplacement competency and twenty subcategories which are the group of knowledge competency & four subcategories including expert knowledge, outplacement knowledge, self comprehension, and organization comprehension, the group of skill competency & nine subcategories including job skill competency, job performance skill, problem-solving skill, reforming skill, communication skill, organization management skill, crisis management skill, career development skill, and human network application skill, the group of attitude-emotion competency & seven subcategories including positive attitude, active attitude, responsibility, professionalism, devoting-sacrificing attitude, affinity, and self-controlling ability, and the group of value-ethics competency & two subcategories including ethical consciousness and morality. The respondents highly regard twenty-two outplacement competency and they consider themselves well-qualified for the subcategories valued over 4.0 such as the professional knowledge, active attitude, responsibility, ethics and morality while they mark the other subcategories below average still need to be improved. Thus, the following is suggestions for successful outplacement. First, individual effort is essential to strengthen their capabilities based on accurate self evaluation, for which the awareness and concept need to be redefined to help them face up to the reality by readjusting career goal to a realistic level. Second, active career development plan to improve shortcoming in terms of outplacement competency is required. Third, it is necessary to establish the infrastructure related to outplacement training such as ON-OFF Line training system and facilities for learning to reinforce user-oriented outplacement training as a regular training course before during after the retirement.

  • PDF

A Comparative Study on the Effective Deep Learning for Fingerprint Recognition with Scar and Wrinkle (상처와 주름이 있는 지문 판별에 효율적인 심층 학습 비교연구)

  • Kim, JunSeob;Rim, BeanBonyka;Sung, Nak-Jun;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.17-23
    • /
    • 2020
  • Biometric information indicating measurement items related to human characteristics has attracted great attention as security technology with high reliability since there is no fear of theft or loss. Among these biometric information, fingerprints are mainly used in fields such as identity verification and identification. If there is a problem such as a wound, wrinkle, or moisture that is difficult to authenticate to the fingerprint image when identifying the identity, the fingerprint expert can identify the problem with the fingerprint directly through the preprocessing step, and apply the image processing algorithm appropriate to the problem. Solve the problem. In this case, by implementing artificial intelligence software that distinguishes fingerprint images with cuts and wrinkles on the fingerprint, it is easy to check whether there are cuts or wrinkles, and by selecting an appropriate algorithm, the fingerprint image can be easily improved. In this study, we developed a total of 17,080 fingerprint databases by acquiring all finger prints of 1,010 students from the Royal University of Cambodia, 600 Sokoto open data sets, and 98 Korean students. In order to determine if there are any injuries or wrinkles in the built database, criteria were established, and the data were validated by experts. The training and test datasets consisted of Cambodian data and Sokoto data, and the ratio was set to 8: 2. The data of 98 Korean students were set up as a validation data set. Using the constructed data set, five CNN-based architectures such as Classic CNN, AlexNet, VGG-16, Resnet50, and Yolo v3 were implemented. A study was conducted to find the model that performed best on the readings. Among the five architectures, ResNet50 showed the best performance with 81.51%.

Effects for kangaroo care: systematic review & meta analysis (캥거루 케어가 미숙아와 어머니에게 미치는 효과 : 체계적 문헌고찰 및 메타분석)

  • Lim, Junghee;Kim, Gaeun;Shin, Yeonghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.599-610
    • /
    • 2016
  • This paper reports the results of a systematic review (SR) and meta-analysis research to compare the effect of Kangaroo care, targeting mothers and premature infants. A randomized clinical trial study was performed until February 2015. The domestic literature contained the non-randomized clinical trial research without restriction according to the level of the study design. A search of the Ovid-Medline, CINAHL, PubMed and KoreaMed, the National Library of KOREA, the National Assembly Library, NDSL, KISS and RISS. Through the KMbase we searched and combined the main term ((kangaroo OR KC OR skin-to-skin) AND (care OR contact)) AND (infant OR preterm OR Low Birth Weight OR LBW), ((kangaroo OR kangaroo OR kangaroo) AND (care OR nursing care OR management OR skin contact)) was made; these were all combined with a keywords search through the selection process. They were excluded in the final 25 studies (n=3051). A methodology checklist for randomized controlled trials (RCTs) designed by SIGN (Scottish Intercollegiate Guidelines Network) was utilized to assess the risk of bias. The overall risk of bias was regarded as low. In 16 studies that were evaluated as a grade of "++", 9 studies were evaluated as a grade of "+". As a result of meta-analysis, kangaroo care regarding the effects of premature mortality, severe infection/sepsis had an insignificant effect. Hyperthermia incidence, growth and development (height and weight), mother-infant attachment, hypothermia incidence, length of hospital days, breast feeding rate, sleeping, anxiety, confidence, and gratification of mothering role were considered significant. In satisfaction of the role performance, depression and stress presented contradictory research results for individual studies showing overall significant difference. This study has some limitations due to the few RCTs comparing kangaroo care in the country. Therefore, further RCTs comparing kangaroo care should be conducted.