• Title/Summary/Keyword: Network Parameters

Search Result 3,062, Processing Time 0.032 seconds

Reusable Network Model using a Modified Hybrid Genetic Algorithm in an Optimal Inventory Management Environment (최적 재고관리환경에서 개량형 하이브리드 유전알고리즘을 이용한 재사용 네트워크 모델)

  • Lee, JeongEun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.53-64
    • /
    • 2019
  • The term 're-use' here signifies the re-use of end-of-life products without changing their form after they have been thoroughly inspected and cleaned. In the re-use network model, the distributor determines the product order quantity on the network through which new products are received from the suppliers or products are supplied to the customers through re-use of the recovered products. In this paper, we propose a reusable network model for reusable products that considers the total logistics cost from the forward logistics to the reverse logistics. We also propose a reusable network model that considers the processing and disposal costs for reuse in an optimal inventory management environment. The authors employe Genetic Algorithm (GA), which is one of the optimization techniques, to verify the validity of the proposed model. And in order to investigate the effect of the parameters on the solution, the priority-based GA (priGA) under three different parameters and the modified Hybrid GA (mhGA), in which parameters are adjusted for each generation, were applied to four examples with varying sizes in the simulation.

A new lightweight network based on MobileNetV3

  • Zhao, Liquan;Wang, Leilei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • The MobileNetV3 is specially designed for mobile devices with limited memory and computing power. To reduce the network parameters and improve the network inference speed, a new lightweight network is proposed based on MobileNetV3. Firstly, to reduce the computation of residual blocks, a partial residual structure is designed by dividing the input feature maps into two parts. The designed partial residual structure is used to replace the residual block in MobileNetV3. Secondly, a dual-path feature extraction structure is designed to further reduce the computation of MobileNetV3. Different convolution kernel sizes are used in the two paths to extract feature maps with different sizes. Besides, a transition layer is also designed for fusing features to reduce the influence of the new structure on accuracy. The CIFAR-100 dataset and Image Net dataset are used to test the performance of the proposed partial residual structure. The ResNet based on the proposed partial residual structure has smaller parameters and FLOPs than the original ResNet. The performance of improved MobileNetV3 is tested on CIFAR-10, CIFAR-100 and ImageNet image classification task dataset. Comparing MobileNetV3, GhostNet and MobileNetV2, the improved MobileNetV3 has smaller parameters and FLOPs. Besides, the improved MobileNetV3 is also tested on CPU and Raspberry Pi. It is faster than other networks

Fuzzy Neural Network with Rule Generaton Nased on Back-Propagation Algorithm (학습기능을 갖는 자동 규칙 생성 퍼지 신경망)

  • 정재경;이동윤;정기욱;김완찬
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.191-200
    • /
    • 1996
  • This paper presetns a new fuzzy neural network for fuzzy modeling.The fuzzy neural network is composed of 4 layers and then odes of each layer represent the each step of the if-then fuzzy inference. A heuristic based on the back-propagation algorithm is proposed to ajdust the parameters of the fuzzy nerual network. We prove the feasibility of the network using the experiments on modeling a nonlinear mathematical system and the comparison with previous research.

  • PDF

A Study on an Artificial Neural Network Design using Evolutionary Programming (진화 프로그래밍 기법을 이용한 신경망의 자동설계에 관한 연구)

  • 강신준;고택범;우천희;이덕규;우광방
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.281-287
    • /
    • 1999
  • In this paper, a design method based on evolutionary programming for feedforward neural networks which have a single hidden layer is presented. By using an evolutionary programming, the network parameters such as the network structure, weight, slope of sigmoid functions and bias of nodes can be acquired simultaneously. To check the effectiveness of the suggested method, two numerical examples are examined. The performance of the identified network is demonstrated.

  • PDF

Performance Evaluation of Finite Field Arithmetic Implementations in Network Coding (네트워크 코딩에서의 유한필드 연산의 구현과 성능 영향 평가)

  • Lee, Chul-Woo;Park, Joon-Sang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.193-201
    • /
    • 2008
  • Using Network Coding in P2P systems yields great benefits, e.g., reduced download delay. The core notion of Network Coding is to allow encoding and decoding at intermediate nodes, which are prohibited in the traditional networking. However, improper implementation of Network Coding may reduce the overall performance of P2P systems. Network Coding cannot work with general arithmetic operations, since its arithmetic is over a Finite Field and the use of an efficient Finite Field arithmetic algorithm is the key to the performance of Network Coding. Also there are other important performance parameters in Network Coding such as Field size. In this paper we study how those factors influence the performance of Network Coding based systems. A set of experiments shows that overall performance of Network Coding can vary 2-5 times by those factors and we argue that when developing a network system using Network Coding those performance parameters must be carefully chosen.

  • PDF

The Effectiveness of Electroglottographic Parameters in Differential Diagnosis of Laryngeal Cancer (후두암 감별진단에 있어 성문전도(Electroglottograph) 파라미터의 유용성)

  • 송인무;고의경;전경명;권순복;김기련;전계록;김광년;정동근;조철우
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.14 no.1
    • /
    • pp.16-25
    • /
    • 2003
  • Background and Objectives : Electroglottography(EGG) is a non-invasive method of monitoring the vocal cord vibration by measuring the variation of physiological impedance across the vocal folds through the neck skin. It reveals especially the vocal fold contact area and is widely used for basic laryngeal researches, voice analysis and synthesis. The purpose of this study is to investigate the effectiveness of EGG parameters in differential diagnosis of laryngeal cancer. Materials and Methods : The author investigated 10 laryngeal cancer and 25 benign laryngeal disease patients who visited at the Department of Otolaryngology, Pusan National University Hospital. The EGG equipment was devised in the author's Department. Among various parameters of EGG, closed quotient(CQ), speed quotient(SQ), speed index(SI), Jitter, Shimmer, Fo were determined by an analysis program made with MATLAB 6.5$^{\circledR}$(Mathwork, Inc.). In order to differentiate various laryngeal diseases from pathologic voice signals, the author has used the electroglottographic parameters using the neural network of multilayer perceptron structure. Results : SQ, SI, Jitter and Shimmer values except those of CQ and Fo showed remarkable differences between benign and malignant laryngeal disease groups. From the artificial neural network, the percentage of differentiating the laryngeal cancer was over 80% in SQ, SI, Jitter, Shimmer except for CQ and Fo. These results indicated that it is possible to discriminate the benign and malignant laryngeal diseases by EGG parameters using the artificial neural network. Conclusion : If parameters of EGG which can reveal for the pathology of laryngeal diseases are additionally developed and the current classification algorithm is improved, the discrimination of laryngeal cancer will become much more accurate.

  • PDF

Parameter Estimation of Storage Function Method using Metamodel (메타모델을 이용한 저류함수법의 매개변수추정)

  • Chung, Gun-Hui;Oh, Jin-A;Kim, Tae-Gyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.81-87
    • /
    • 2010
  • In order to calculate the accurate runoff from a basin, nonlinearity in the relationship between rainfall and runoff has to be considered. Many runoff calculation models assume the linearity in the relationship or are too complicated to be analyzed. Therefore, the storage function method has been used in the prediction of flood because of the simplicity of the model. The storage function method has five parameters with related to the basin and rainfall characteristics which can be estimated by the empirical trial and error method. To optimize these parameters, regression method or optimization techniques such as genetic algorithm have been used, however, it is not easy to optimize them because of the complexity of the method. In this study, the metamodel is proposed to estimate those model parameters. The metamodel is the combination of artificial neural network and genetic algorithm. The model is consisted of two stages. In the first stage, an artificial neural network is constructed using the given rainfall-runoff relationship. In the second stage, the parameters of the storage function method are estimated using genetic algorithm and the trained artificial neural network. The proposed metamodel is applied in the Peong Chang River basin and the results are presented.

Development of Roughness Estimation Model for Plunge Grinding of Valve Parts Using Neural Network (뉴럴 네트워크를 이용한 밸브 부품 생산용 플런지 연삭의 거칠기 예측모델 개발)

  • Choi, Jeong-Ju;Park, Joon-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.62-67
    • /
    • 2011
  • Grinding process is executed in the final machining stage to meet the quality requirements. In generally the ground surface of workpiece is affected by dressing condition as well as grinding condition. In order to estimate the roughness of workpiece, the several roughness models have been researched. These models defined the specific parameters and considered the several parameters which affect to roughness as multiply relationship among them. However, the multiply relationship among parameters is not enough to show the complicated grinding mechanism. Therefore, the neural network algorithm is used in this paper to predict the ground roughness for the plunge grinding. The proposed structure is composed of the initial roughness as well as final roughness model. The input parameters of proposed neural network are referred with the existing roughness model's. The performance of the proposed model is verified through experiments.

Machine Learning Approach to Estimation of Stellar Atmospheric Parameters

  • Han, Jong Heon;Lee, Young Sun;Kim, Young kwang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.54.2-54.2
    • /
    • 2016
  • We present a machine learning approach to estimating stellar atmospheric parameters, effective temperature (Teff), surface gravity (log g), and metallicity ([Fe/H]) for stars observed during the course of the Sloan Digital Sky Survey (SDSS). For training a neural network, we randomly sampled the SDSS data with stellar parameters available from SEGUE Stellar Parameter Pipeline (SSPP) to cover the parameter space as wide as possible. We selected stars that are not included in the training sample as validation sample to determine the accuracy and precision of each parameter. We also divided the training and validation samples into four groups that cover signal-to-noise ratio (S/N) of 10-20, 20-30, 30-50, and over 50 to assess the effect of S/N on the parameter estimation. We find from the comparison of the network-driven parameters with the SSPP ones the range of the uncertainties of 73~123 K in Teff, 0.18~0.42 dex in log g, and 0.12~0.25 dex in [Fe/H], respectively, depending on the S/N range adopted. We conclude that these precisions are high enough to study the chemical and kinematic properties of the Galactic disk and halo stars, and we will attempt to apply this technique to Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), which plans to obtain about 8 million stellar spectra, in order to estimate stellar parameters.

  • PDF

Optimization Analysis between Processing Parameters and Physical Properties of Geocomposites (지오컴포지트의 공정인자와 물성의 최적화 분석)

  • Jeon, Han-Yong;Kim, Joo-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.1
    • /
    • pp.39-43
    • /
    • 2007
  • Geocomposites of needle punched and spunbonded nonwovens having the reinforcement and drainage functions were manufactured by use of thermal bonding method. The physical properties (e.g. tensile, tear and bursting strength, permittivity) of these multi-layered nonwovens were dependent on the processing parameters of temperatures, pressures, bonding periods etc. - in manufacturing by use of thermal bonding method. Therefore, it is very meaningful to optimize the processing parameters and physical properties of the geocomposites by thermal bonding method. In this study, an algorithm has been developed to optimize the process of the geocomposites using an artificial neural network (ANN). Geocomposites were employed to examine the effects of manufacturing methods on the analysis results and the neural network simulations have been applied to predict the changes of the nonwovens performances by varying the processing parameters.

  • PDF