• 제목/요약/키워드: Network Parameters

검색결과 3,062건 처리시간 0.033초

Analysis of Effects of Sizes of Orifice and Pockets on the Rigidity of Hydrostatic Bearing Using Neural Network Predictor System

  • Canbulut, Fazil;Sinanoglu, Cem;Yildirim, Sahin
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.432-442
    • /
    • 2004
  • This paper presents a neural network predictor for analysing rigidity variations of hydrostatic bearing system. The designed neural network has feedforward structure with three layers. The layers are input layer, hidden layer and output layer. Two main parameter could be considered for hydrostatic bearing system. These parameters are the size of bearing pocket and the orifice dimension. Due to importancy of these parameters, it is necessary to analyse with a suitable optimisation method such as neural network. As depicted from the results, the proposed neural predictor exactly follows experimental desired results.

신경망을 이용한 3차원 잡는 점들의 해석적 결정 (Analytic Determination of 3D Grasping points Using Neural Network)

  • 이현기;한창우;이상룡
    • 한국정밀공학회지
    • /
    • 제20권4호
    • /
    • pp.112-117
    • /
    • 2003
  • This paper deals with the problem of synthesis of the 3-dimensional Grasp Planning. In previous studies the genetic algorithm has been used to find optimal grasping points, but it had a limitation such as the determination time of grasping points was so long. To overcome this limitation we proposed a new algorithm which employs the Neural Network. In the Neural network we chose input parameters based on the shape of the object and output parameters resulted from optimization with the GA method. In this study the GRNN method is employed, it has been trained by the result value of optimization method and it has been tested by known object. The algorithm is verified by computer simulation.

비구면 광학렌즈 성형에 있어서 유한요소법과 신경회로망을 이용한 사출조건 예측 시스템의 개발 (The prediction of the optimum injection conditions of aspherical lens by using FEM and Neural Network)

  • 곽태수;스즈키토오루;오오모리히토시;배원병
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.168-171
    • /
    • 2002
  • A neural network model for predicting the quality or soundness of the injected plastic aspherical lens based on process parameters has been developed. The approach uses a Real Time Recurrent Neural Network 4-5-2 (RTRN) trained based on input/output data that were taken from FE analysis worts carried out through a CAE software. The system has been developed to search an optimum set of process parameters and reduce the time required for planning the conditions of plastic injection molding at the design stage.

  • PDF

전력설비시스템을 위한 퍼지 평가함수와 신경회로망을 사용한 PID제어기의 자동동조 (An Auto-tuning of PID Controller using Fuzzy Performance Measure and Neural Network for Equipment System)

  • 이수흠;;박현태;이내일
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제13권2호
    • /
    • pp.195-195
    • /
    • 1999
  • This paper is Proposed a new method to deal with the optimized auto-tuning for the PID controller which is used to the process-control in various fields. First of all, in this method, 1st order delay system with dead time which is modelled from the unit step response of the system is Pade-approximated, then initial values are determined by the Ziegler-Nickels method. So we can find the parameters of PID controller so as to minimize the fuzzy criterion function which includes the maximum overshoot, damping ratio, rising time and settling time. Finally, after studying the parameters of PID controller by Backpropagation of Neural-Network, when we give new K, L, T values to Neural-Network, the optimized parameter of PID controller is found by Neural-Network Program.

신경회로망을 이용한 공압서보 XY-플로터의 운동제어 (Motion Control of a Pneumatic Servo XY-Plotter using Neural Network)

  • 황운규;조승호
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.603-609
    • /
    • 2004
  • This paper deals with the issue of Neural Network-based control for a rodless pneumatic cylinder system which is utilized for a pneumatic XY-plotter. In order to identify the system design parameters, the open loop response of a pneumatic rodless cylinder controlled by a pneumatic servovalve is investigated by applying a self-excited oscillation method. Based on the system design parameters, the PD feedback compensator is designed and then Neural Network is incorporated with it. The experiment of a trajectory tracking control using a PD-NN has been performed and proved its excellent performance by comparing with that of a PD feedback compensator.

Comparison of Latin Hypercube Sampling and Simple Random Sampling Applied to Neural Network Modeling of HfO2 Thin Film Fabrication

  • Lee, Jung-Hwan;Ko, Young-Don;Yun, Il-Gu;Han, Kyong-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권4호
    • /
    • pp.210-214
    • /
    • 2006
  • In this paper, two sampling methods which are Latin hypercube sampling (LHS) and simple random sampling were. compared to improve the modeling speed of neural network model. Sampling method was used to generate initial weights and bias set. Electrical characteristic data for $HfO_2$ thin film was used as modeling data. 10 initial parameter sets which are initial weights and bias sets were generated using LHS and simple random sampling, respectively. Modeling was performed with generated initial parameters and measured epoch number. The other network parameters were fixed. The iterative 20 minimum epoch numbers for LHS and simple random sampling were analyzed by nonparametric method because of their nonnormality.

Shear lag prediction in symmetrical laminated composite box beams using artificial neural network

  • Chandak, Rajeev;Upadhyay, Akhil;Bhargava, Pradeep
    • Structural Engineering and Mechanics
    • /
    • 제29권1호
    • /
    • pp.77-89
    • /
    • 2008
  • Presence of high degree of orthotropy enhances shear lag phenomenon in laminated composite box-beams and it persists till failure. In this paper three key parameters governing shear lag behavior of laminated composite box beams are identified and defined by simple expressions. Uniqueness of the identified key parameters is proved with the help of finite element method (FEM) based studies. In addition to this, for the sake of generalization of prediction of shear lag effect in symmetrical laminated composite box beams a feed forward back propagation neural network (BPNN) model is developed. The network is trained and tested using the data base generated by extensive FEM studies carried out for various b/D, b/tF, tF/tW and laminate configurations. An optimum network architecture has been established which can effectively learn the pattern. Computational efficiency of the developed ANN makes it suitable for use in optimum design of laminated composite box-beams.

DCT와 신경회로망을 이용한 패턴인식에 관한 연구 (A study on pattern recognition using DCT and neural network)

  • 이명길;이주신
    • 한국통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.481-492
    • /
    • 1997
  • This paper presents an algorithm for recognizing surface mount device(SMD) IC pattern based on the error back propoagation(EBP) neural network and discrete cosine transform(DCT). In this approach, we chose such parameters as frequency, angle, translation and amplitude for the shape informantion of SMD IC, which are calculated from the coefficient matrix of DCT. These feature parameters are normalized and then used for the input vector of neural network which is capable of adapting the surroundings such as variation of illumination, arrangement of objects and translation. Learning of EBP neural network is carried out until maximum error of the output layer is less then 0.020 and consequently, after the learning of forty thousand times, the maximum error have got to this value. Experimental results show that the rate of recognition is 100% in case of the random pattern taken at a similar circumstance as well as normalized training pattern. It also show that proposed method is not only relatively relatively simple compare with the traditional space domain method in extracting the feature parameter but also able to re recognize the pattern's class, position, and existence.

  • PDF

Improved Characteristic Analysis of a 5-phase Hybrid Stepping Motor Using the Neural Network and Numerical Method

  • Lim, Ki-Chae;Hong, Jung-Pyo;Kim, Gyu-Tak;Im, Tae-Bin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제11B권2호
    • /
    • pp.15-21
    • /
    • 2001
  • This paper presents an improved characteristic analysis methodology for a 5-phase hybrid stepping motor. The basic approach is based on the use of equivalent magnetic circuit taking into account the localized saturation throughout the hybrid stepping motor. The finite element method(FEM) is used to generate the magnetic circuit parameters for the complex stator and rotor teeth and airgap considering the saturation effects in tooth and poles. In addition, the neural network is used to map a change of parameters and predicts their approximation. Therefore, the proposed method efficiently improves the accuracy of analysis by using the parameter characterizing localized saturation effects and reduces the computational time by using the neural network. An improved circuit model of 5-phase hybrid stepping motor is presented and its application is provided to demonstrate the effectiveness of the proposed method.

PID제어기 자동동조에 관한 연구 (A Study on the PID controller auto-tuning)

  • 조현섭
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2009년도 추계학술발표논문집
    • /
    • pp.630-632
    • /
    • 2009
  • The parameters of PID controller should be readjusted whenever system character change. In spite of a rapid development of control theory, this work needs much time and effort of expert. In this paper, to resolve this defect, after the sample of parameters in the changeable limits of system character is obtained, these parametrs are used as desired values of back propagation learning algorithm, also neural network auto tuner for PID controller is proposed by determing the optimum structure of neural network. Simulation results demonstrate that auto-tuning proper to system character can work well.

  • PDF