• Title/Summary/Keyword: Network Optimization Problem

Search Result 717, Processing Time 0.032 seconds

Evolutionary Network Optimization: Hybrid Genetic Algorithms Approach

  • Gen, Mitsuo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.195-204
    • /
    • 2003
  • Network optimization is being increasingly important and fundamental issue in the fields such as engineering, computer science, operations research, transportation, telecommunication, decision support systems, manufacturing, and airline scheduling. Networks provide a useful way to modeling real world problems and are extensively used in practice. Many real world applications impose on more complex issues, such as, complex structure, complex constraints, and multiple objects to be handled simultaneously and make the problem intractable to the traditional approaches. Recent advances in evolutionary computation have made it possible to solve such practical network optimization problems. The invited talk introduces a thorough treatment of evolutionary approaches, i.e., hybrid genetic algorithms approach to network optimization problems, such as, fixed charge transportation problem, minimum cost and maximum flow problem, minimum spanning tree problem, multiple project scheduling problems, scheduling problem in FMS.

  • PDF

Cross-Layer and End-to-End Optimization for the Integrated Wireless and Wireline Network

  • Gong, Seong-Lyong;Roh, Hee-Tae;Lee, Jang-Won
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.554-565
    • /
    • 2012
  • In this paper, we study a cross-layer and end-to-end optimization problem for the integrated wireless and wireline network that consists of one wireline core network and multiple wireless access networks. We consider joint end-to-end flow control/distribution at the transport and network layers and opportunistic scheduling at the data link and physical layers. We formulate a single stochastic optimization problem and solve it by using a dual approach and a stochastic sub-gradient algorithm. The developed algorithm can be implemented in a distributed way, vertically among communication layers and horizontally among all entities in the network, clearly showing what should be done at each layer and each entity and what parameters should be exchanged between layers and between entities. Numerical results show that our cross-layer and end-to-end optimization approach provides more efficient resource allocation than the conventional layered and separated optimization approach.

New learning algorithm to solve the inverse optimization problems

  • Aoyama, Tomoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.42.2-42
    • /
    • 2002
  • We discuss a neural network solver for the inverse optimization problem. The problem is that find functional relations between input and output data, which are include defects. Finding the relations, predictions of the defect parts are also required. The part of finding the defects in the input data is an inverse problem . We consider the meanings to solve the problem on the neural network system at first. Next, we consider the network structure of the system, the learning scheme of the network, and at last, examine the precision on the numerical calculations. In the paper, we proposed the high-precision learning method for plural three-layer neural network system that is series-connect...

  • PDF

Time-Varying Two-Phase Optimization and its Application to neural Network Learning (시변 2상 최적화 및 이의 신경회로망 학습에의 응용)

  • Myeong, Hyeon;Kim, Jong-Hwan
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.179-189
    • /
    • 1994
  • A two-phase neural network finds exact feasible solutions for a constrained optimization programming problem. The time-varying programming neural network is a modified steepest-gradient algorithm which solves time-varying optimization problems. In this paper, we propose a time-varying two-phase optimization neural network which incorporates the merits of the two-phase neural network and the time-varying neural network. The proposed algorithm is applied to system identification and function approximation using a multi-layer perceptron. Particularly training of a multi-layer perceptrion is regarded as a time-varying optimization problem. Our algorithm can also be applied to the case where the weights are constrained. Simulation results prove the proposed algorithm is efficient for solving various optimization problems.

  • PDF

Pareto fronts-driven Multi-Objective Cuckoo Search for 5G Network Optimization

  • Wang, Junyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2800-2814
    • /
    • 2020
  • 5G network optimization problem is a challenging optimization problem in the practical engineering applications. In this paper, to tackle this issue, Pareto fronts-driven Multi-Objective Cuckoo Search (PMOCS) is proposed based on Cuckoo Search. Firstly, the original global search manner is upgraded to a new form, which is aimed to strengthening the convergence. Then, the original local search manner is modified to highlight the diversity. To test the overall performance of PMOCS, PMOCS is test on three test suits against several classical comparison methods. Experimental results demonstrate that PMOCS exhibits outstanding performance. Further experiments on the 5G network optimization problem indicates that PMOCS is promising compared with other methods.

Beamforming Optimization for Multiuser Two-Tier Networks

  • Jeong, Young-Min;Quek, Tony Q.S.;Shin, Hyun-Dong
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.327-338
    • /
    • 2011
  • With the incitation to reduce power consumption and the aggressive reuse of spectral resources, there is an inevitable trend towards the deployment of small-cell networks by decomposing a traditional single-tier network into a multi-tier network with very high throughput per network area. However, this cell size reduction increases the complexity of network operation and the severity of cross-tier interference. In this paper, we consider a downlink two-tier network comprising of a multiple-antenna macrocell base station and a single femtocell access point, each serving multiples users with a single antenna. In this scenario, we treat the following beamforming optimization problems: i) Total transmit power minimization problem; ii) mean-square error balancing problem; and iii) interference power minimization problem. In the presence of perfect channel state information (CSI), we formulate the optimization algorithms in a centralized manner and determine the optimal beamformers using standard convex optimization techniques. In addition, we propose semi-decentralized algorithms to overcome the drawback of centralized design by introducing the signal-to-leakage plus noise ratio criteria. Taking into account imperfect CSI for both centralized and semi-decentralized approaches, we also propose robust algorithms tailored by the worst-case design to mitigate the effect of channel uncertainty. Finally, numerical results are presented to validate our proposed algorithms.

Priority-based Genetic Algorithm for Bicriteria Network Optimization Problem

  • Gen, Mitsuo;Lin, Lin;Cheng, Runwei
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.175-178
    • /
    • 2003
  • In recent years, several researchers have presented the extensive research reports on network optimization problems. In our real life applications, many important network problems are typically formulated as a Maximum flow model (MXF) or a Minimum Cost flow model (MCF). In this paper, we propose a Genetic Algorithm (GA) approach used a priority-based chromosome for solving the bicriteria network optimization problem including MXF and MCF models(MXF/MCF).

  • PDF

On the Formulation and Optimal Solution of the Rate Control Problem in Wireless Mesh Networks

  • Le, Cong Loi;Hwang, Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5B
    • /
    • pp.295-303
    • /
    • 2007
  • An algorithm is proposed to seek a local optimal solution of the network utility maximization problem in a wireless mesh network, where the architecture being considered is an infrastructure/backbone wireless mesh network. The objective is to achieve proportional fairness amongst the end-to-end flows in wireless mesh networks. In order to establish the communication constraints of the flow rates in the network utility maximization problem, we have presented necessary and sufficient conditions for the achievability of the flow rates. Since wireless mesh networks are generally considered as a type of ad hoc networks, similarly as in wireless multi-hop network, the network utility maximization problem in wireless mesh network is a nonlinear nonconvex programming problem. Besides, the gateway/bridge functionalities in mesh routers enable the integration of wireless mesh networks with various existing wireless networks. Thus, the rate optimization problem in wireless mesh networks is more complex than in wireless multi-hop networks.

An implementation of network optimaization system using GIS (GIS를 이용한 네트워트 최적화 시스템 구축)

  • 박찬규;이상욱;박순달;성기석;진희채
    • Korean Management Science Review
    • /
    • v.17 no.1
    • /
    • pp.55-64
    • /
    • 2000
  • By managing not only geographical information but also various kinds of attribute data. GIS presents useful information for decision-makings. Most of decision-making problems using GIS can be formulated into network-optimization problems. In this study we deal with the implementation of network optimization system that extracts data from the database in GIS. solves a network optimization problem and present optimal solutions through GIS' graphical user interface. We design a nitwork optimization system and present some implementation techniques by showing a prototype of the network optimization system. Our network optimization system consists of three components : the interface module for user and GIS the basic network the program module the advanced network optimization program module. To handle large-scale networks the program module including various techniques for large sparse networks is also considered, For the implementation of the network optimization system we consider two approaches : the method using script languages supported by GIS and the method using client tools of GIS. Finally some execution results displayed by the prototype version of network optimization system are given.

  • PDF

Optimization of Transportation Problem in Dynamic Logistics Network

  • Chung, Ji-Bok;Choi, Byung-Cheon
    • Journal of Distribution Science
    • /
    • v.14 no.2
    • /
    • pp.41-45
    • /
    • 2016
  • Purpose - Finding an optimal path is an essential component for the design and operation of smart transportation or logistics network. Many applications in navigation system assume that travel time of each link is fixed and same. However, in practice, the travel time of each link changes over time. In this paper, we introduce a new transportation problem to find a latest departing time and delivery path between the two nodes, while not violating the appointed time at the destination node. Research design, data, and methodology - To solve the problem, we suggest a mathematical model based on network optimization theory and a backward search method to find an optimal solution. Results - First, we introduce a dynamic transportation problem which is different with traditional shortest path or minimum cost path. Second, we propose an algorithm solution based on backward search to solve the problem in a large-sized network. Conclusions - We proposed a new transportation problem which is different with traditional shortest path or minimum cost path. We analyzed the problem under the conditions that travel time is changing, and proposed an algorithm to solve them. Extending our models for visiting two or more destinations is one of the further research topics.