• Title/Summary/Keyword: Network Latency

Search Result 764, Processing Time 0.021 seconds

Authenticated Handoff with Low Latency and Traffic Management in WLAN (무선랜에서 낮은 지연 특성을 가지는 인증유지 핸드오프 기법과 트래픽 관리 기법)

  • Choi Jae-woo;Nyang Dae-hun;Kang Jeon-il
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.2
    • /
    • pp.81-94
    • /
    • 2005
  • Recently, wireless LAN circumstance is being widely deployed in Public spots. Many People use Portable equipments such as PDA and laptop computer for multimedia applications, and also demand of mobility support is increasing. However, handoff latency is inevitably occurred between both APs when clients move from one AP to another. To reduce handoff latency. in this paper, we suggest WFH(Weighted Frequent Handoff) using effective data structure. WFH improves cache hit ratio using a new cache replacement algorithm considering the movement pattern of users. It also reduces unessential duplicate traffics. Our algorithm uses FHR(Frequent Handoff Region) that can change pre-authentication lesion according to QoS based user level, movement Pattern and Neighbor Graph that dynamically captures network movement topology.

Dynamic AOI Management for P2P MMOGs (P2P MMOGs에 대한 동적 AOI 관리기법)

  • Lim, Chae-Gyun;Rho, Kyung-Taeg
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.269-273
    • /
    • 2010
  • Massively Multiplayer Online Game (MMOG) is one of diverse applications where more than hundreds of users enjoy experiencing virtual worlds. Voronoi-based Overlay Network (VON) is proposed to reduce a bandwidth consumption in P2P MMOGs and Vorocast also is made using message forwarding in VON. We propose a dynamic area of interest (AOI) management method that solves problems such as less consistency and high latency due to sending position updates to more neighbor nodes from the message originator in forwarding scheme. Our scheme provides the higher consistency and reduces latency by combining direct connection scheme and Vorocast scheme compared to existing schemes. The proposed model is evaluated through simulations.

Performance Analysis of Deadlock-free Multicast Algorithms in Torus Networks (토러스 네트워크에서 무교착 멀티캐스트 알고리즘의 성능분석)

  • Won, Bok-Hee;Choi, Sang-Bang
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.3
    • /
    • pp.287-299
    • /
    • 2000
  • In this paper, we classify multicast methods into three categories, i.e., tree-based, path-based, and hybrid-based multicasts, for a multicomputer employing the bidirectional torus network and wormhole routing. We propose the dynamic partition multicast routing (DPMR) as a path-based algorithm. As a hybrid-based algorithm, we suggest the hybrid multicast routing (HMR), which employs the tree-based approach in the first phase of routing and the path-based approach in the second phase. Performance is measured in terms of the average latency for various message length to compare three multicast routing algorithms. We also compare the performance of wormhole routing having variable buffer size with virtual cut-through switching. The message latency for each switching method is compared using the DPMR algorithm to evaluate the buffer size trade-off on the performance.

  • PDF

An Effective Handover Scheme Using Reserved Addresses in Mobile IPv6 Networks (예약 주소를 이용한 Mobile IPv6에서의 효율적인 핸드오버 지원)

  • Jung, Hee-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.97-102
    • /
    • 2006
  • This paper proposes a handover extension scheme to support effectively real-time services in Mobile IPv6 networks. The proposed scheme could simplify the handover procedure by using the proposed reserved addresses scheme so that it could reduce considerably handover latency in Mobile IPv6. The performance analysis shows that the handover latency in the proposed scheme could be reduced by minimum 1 second, maximum above 3 second compared to that of pure Mobile IPv6. Accordingly the proposed scheme could be considered as a strong candidate to support real-time services like VoIP in future network based on Mobile IPv6.

On Sensor Network Routing for Cloaking Source Location Against Packet-Tracing

  • Tscha, Yeong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3B
    • /
    • pp.213-224
    • /
    • 2009
  • Most of existing routing methods in wireless sensor networks to counter the local eavesdropping-based packet-tracing deal with a single asset and suffer from the packet-delivery latency as they prefer to take a separate path of many hops for each packet being sent. Recently, the author proposed a routing method, GSLP-w(GPSR-based Source-Location Privacy with crew size w), that enhances location privacy of the packet-originating node(i.e., active source) in the presence of multiple assets, yet taking a path of not too long. In this paper, we present a refined routing(i.e., next-hop selection) procedure of it and empirically study privacy strength and delivery latency with varying the crew size w(i.e., the number of packets being sent per path). It turns out that GSLP-w offers the best privacy strength when the number of packets being sent per path is randomly chosen from the range [$1,h_{s-b}/4$] and that further improvements on the privacy are achieved by increasing the random walk length TTLrw or the probability prw that goes into random walk(where, $h_{s-b}$ is the number of hops of the shortest path between packet-originating node s and sink b).

New Transient Request with Loose Ordering for Token Coherence Protocol (토큰 코히런스 프로토콜을 위한 경서열 트렌지언트 요청 처리 방법)

  • Park, Yun Kyung;Kim, Dae Young
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.10
    • /
    • pp.615-619
    • /
    • 2005
  • Token coherence protocol has many good reasons against snooping/directory-based protocol in terms of latency, bandwidth, and complexity. Token counting easily maintains correctness of the protocol without global ordering of request which is basis of other dominant cache coherence protocols. But this lack of global ordering causes starvation which is not happening in snooping/directory-based protocols. Token coherence protocol solves this problem by providing an emergency mechanism called persistent request. It enforces other processors in the competition (or accessing same shared memory block, to give up their tokens to feed a starving processor. However, as the number of processors grows in a system, the frequency of starvation occurrence increases. In other words, the situation where persistent request occurs becomes too frequent to be emergent. As the frequency of persistent requests increases, not only the cost of each persistent matters since it is based on broadcasting to all processors, but also the increased traffic of persistent requests will saturate the bandwidth of multiprocessor interconnection network. This paper proposes a new request mechanism that defines order of requests to reduce occurrence of persistent requests. This ordering mechanism has been designed to be decentralized since centralized mechanism in both snooping-based protocol and directory-based protocol is one of primary reasons why token coherence protocol has advantage in terms of latency and bandwidth against these two dominant Protocols.

Performance Comparison of Route Optimization Handover Methods in Proxy Mobile IPv6 Network (Proxy Mobile IPv6 네트워크에서 경로 최적화 핸드오버 기법들의 성능 비교)

  • Jang, Ji-Won;Jeon, Se-Il;Kim, Young-Han
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.59-66
    • /
    • 2010
  • In this paper, we compare the performance of proposals for route optimization handover, which provides optimized communication to mobile node, presented in IETF (Internet Engineering Task Force). For comparison, we consider the architecture with two MAGs (Mobile Access Gateways) and single LMA (Local Mobility Anchor), and analyze the signaling cost, handover latency, and packet loss. Evaluation results show that they are changed depending on the involved component, the number of route optimization messages and performance factor that each proposal targets.

An Mechanism to Support IP Multicast over ATM Network (ATM망에서의 IP 멀티캐스트 지원 메커니즘)

  • 안광수
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.4
    • /
    • pp.117-125
    • /
    • 2003
  • The proposed mechanism has an group management server, which manages the information about both the receivers and the senders. Any receiver can dynamically join/leave the multicast VC. The signaling overload due to group membership changes is not concentrated on the sender, but it is distributed to many receivers for the scalability improvement. The associated signaling messages propagates from the receivers to the ATM switch dedicated to the multicast VC, and hence no signaling overload exists in the shared links there is no latency for the receiver to wait. Our proposed scheme is superior in the view of scalability, the efficiency and the latency to other schemes.

  • PDF

Adaptive Deadline-aware Scheme (ADAS) for Data Migration between Cloud and Fog Layers

  • Khalid, Adnan;Shahbaz, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1002-1015
    • /
    • 2018
  • The advent of Internet of Things (IoT) and the evident inadequacy of Cloud networks concerning management of numerous end nodes have brought about a shift of paradigm giving birth to Fog computing. Fog computing is an extension of Cloud computing that extends Cloud resources at the edge of the network, closer to the user. Cloud computing has become one of the essential needs of people over the Internet but with the emerging concept of IoT, traditional Clouds seem inadequate. IoT entails extremely low latency and for that, the Cloud servers that are distant and unknown to the user appear to be unsuitable. With the help of Fog computing, the Fog devices installed would be closer to the user that will provide an immediate storage for the frequently needed data. This paper discusses data migration between different storage types especially between Cloud devices and then presents a mechanism to migrate data between Cloud and Fog Layer. We call this mechanism Adaptive Deadline-Aware Scheme (ADAS) for Data migration between Cloud and Fog. We will demonstrate that we can access and process latency sensitive "hot" data through the proposed ADAS more efficiently than with a traditional Cloud setup.

Efficient Peer Assignment for Low-Latency Transmission of Scalable Coded Images

  • Su, Xiao;Wang, Tao
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.79-88
    • /
    • 2008
  • In this paper, we propose efficient peer assignment algorithms for low-latency transmission of scalable coded images in peer-to-peer networks, in which peers may dynamically join and leave the networks. The objective of our algorithm is to minimize the transmission time of a requested image that is scalable coded. When an image is scalable coded in different bit rates, the bit stream encoded in a lower bit rate is a prefix subset of the one encoded in a higher bit rate. Therefore, a peer with the same requested image coded in any bit rate, even when it is different from the requested rate, may work as a supplying peer. As a result, when a scalable coded image is requested, more supplying peers can be found in peer-to-peer networks to help with the transfer. However, the set of supplying peers is not static during transmission, as the peers in this set may leave the network or finish their transmission at different times. The proposed peer assignment algorithms have taken into account the above constraints. In this paper, we first prove the existence of an optimal peer assignment solution for a simple identity permutation function, and then formulate peer assignment with this identity permutation as a mixed-integer programming problem. Next, we discuss how to address the problem of dynamic peer departures during image transmission. Finally, we carry out experiments to evaluate the performance of proposed peer assignment algorithms.