• Title/Summary/Keyword: Network Latency

Search Result 764, Processing Time 0.021 seconds

EP-MAC: Early Preamble MAC To Achieve Low Delay And Energy Consumption In Duty Cycle Based Asynchronous Wireless Sensor Networks

  • Oak, Jeong-Yeob;Choi, Young-June;Pak, Wooguil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.2980-2991
    • /
    • 2012
  • Since wireless sensor networks are broadly used in various areas, there have been a number of protocols developed to satisfy specific constraints of each application. The most important and common requirements regardless of application types are to provide a long network lifetime and small end-to-end delay. In this paper, we propose Early Preamble MAC (EP-MAC) with improved energy conservation and low latency. It is based on CMAC but adopts a new preamble type called 'early preamble'. In EP-MAC, a transmitting node can find quickly when a next receiving node wakes up, so EP-MAC enables direct data forwarding in the next phase. From numerical analysis, we show that EP-MAC improves energy consumption and latency greatly compared to CMAC. We also implemented EP-MAC with NS-2, and through extensive simulation, we confirmed that EP-MAC outperforms CMAC.

Schedule communication routing approach to maximize energy efficiency in wireless body sensor networks

  • Kaebeh, Yaeghoobi S.B.;Soni, M.K.;Tyagi, S.S.
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.225-234
    • /
    • 2018
  • E-Health allows you to supersede the central patient wireless healthcare system. Wireless Body Sensor Network (WBSN) is the first phase of the e-Health system. In this paper, we aim to understand e-Health architecture and configuration, and attempt to minimize energy consumption and latency in transmission routing protocols during restrictive latency in data delivery of WBSN phase. The goal is to concentrate on polling protocol to improve and optimize the routing time interval and schedule communication to reduce energy utilization. In this research, two types of network models routing protocols are proposed - elemental and clustering. The elemental model improves efficiency by using a polling protocol, and the clustering model is the extension of the elemental model that Destruct Supervised Decision Tree (DSDT) algorithm has been proposed to solve the time interval conflict transmission. The simulation study verifies that the proposed models deliver better performance than the existing BSN protocol for WBSN.

Industrial IoT Standardization Trend of the 5G Mobile Network (5G 모바일 네트워크의 Industrial IoT 표준기술 동향)

  • Kim, K.S.;Kang, Y.H.;Kim, C.K.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.6
    • /
    • pp.13-24
    • /
    • 2021
  • Industrial networks has been developing various technologies from fieldbus technology to industrial Ethernet and time-sensitive networking. The industry expects that the 5G mobile network will solve the diverse and highly specific industrial site requirements. Accordingly, 3GPP has been developing standard functions to provide ultra-high reliability, ultra-high speed, ultra-connection, and ultra-low latency services, and 3GPP Rel-16 began developing ultra-low latency and ultra-high reliability communication functions for 5G mobile networks to support vertical industries. In this paper, we show the related standardization trends and requirements to apply industrial IoT service scenarios to 5G mobile networks, and in particular, we introduce 5G system features and extended 5G system architecture to provide time sensitive communication and time synchronization services.

Technical Trends of Ultra-Reliable Low-Latency Communication for 5G (5G URLLC 기술 동향)

  • Park, O.S.;Kim, S.K.;Park, G.Y.;Shin, W.R.;Shin, J.S.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.6
    • /
    • pp.42-50
    • /
    • 2019
  • The fifth generation (5G) wireless technology is expected to be the trigger for the fourth industrial revolution. In particular, 5G ultra reliable low latency communication (URLLC) is expected to lead the wireless automation in vertical domains. In this paper, we analyze use cases, key metrics, and physical layer technologies for 5G URLLC standardized in $3^{rd}$ Generation Partnership Project Radio Access Network (3GPP RAN). Additionally, we discuss enabling RAN technologies towards beyond 5G to support high reliability and low latency.

Simultaneous neural machine translation with a reinforced attention mechanism

  • Lee, YoHan;Shin, JongHun;Kim, YoungKil
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.775-786
    • /
    • 2021
  • To translate in real time, a simultaneous translation system should determine when to stop reading source tokens and generate target tokens corresponding to a partial source sentence read up to that point. However, conventional attention-based neural machine translation (NMT) models cannot produce translations with adequate latency in online scenarios because they wait until a source sentence is completed to compute alignment between the source and target tokens. To address this issue, we propose a reinforced learning (RL)-based attention mechanism, the reinforced attention mechanism, which allows a neural translation model to jointly train the stopping criterion and a partial translation model. The proposed attention mechanism comprises two modules, one to ensure translation quality and the other to address latency. Different from previous RL-based simultaneous translation systems, which learn the stopping criterion from a fixed NMT model, the modules can be trained jointly with a novel reward function. In our experiments, the proposed model has better translation quality and comparable latency compared to previous models.

A Study on InfiniBand Network Low-Latency Assure for High Speed Processing of Exponential Transaction (폭증스트림 고속 처리를 위한 InfiniBand 환경에서의 Low-Latency 보장 연구)

  • Jung, Hyedong;Hong, Jinwoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.259-261
    • /
    • 2013
  • 금융 IT와 같은 분야에서는 빅데이터의 큰 특징 중 하나인 Velocity의 개선이 가장 큰 문제이다. 이는 산업의 특성상 승자가 시장을 독식하는 구조로 0.1 초라도 빠른 시스템 속도를 확보하면 시장 경쟁력이 매우 크기 때문이다. 비단 금융 IT 뿐만 아니라 다른 산업들도 최근 보다 빠른 속도의 데이터 처리에 매우 민감하게 반응하는 환경으로 변화하고 있으므로 이에 대한 솔루션이 필요하며 본 연구에서는 폭증스트림의 고속처리를 위한 Low-Latency에 대한 다양한 실험과 환경 구축을 통해 빅데이터의 Velocity 문제를 해결할 수 있는 방안을 제시한다.

Agent with Low-latency Overcoming Technique for Distributed Cluster-based Machine Learning

  • Seo-Yeon, Gu;Seok-Jae, Moon;Byung-Joon, Park
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.157-163
    • /
    • 2023
  • Recently, as businesses and data types become more complex and diverse, efficient data analysis using machine learning is required. However, since communication in the cloud environment is greatly affected by network latency, data analysis is not smooth if information delay occurs. In this paper, SPT (Safe Proper Time) was applied to the cluster-based machine learning data analysis agent proposed in previous studies to solve this delay problem. SPT is a method of remotely and directly accessing memory to a cluster that processes data between layers, effectively improving data transfer speed and ensuring timeliness and reliability of data transfer.

A Comparative Analysis on the Handover Latencies of IPv6 Mobility Support Protocols (IPv6 이동성 지원 프로토콜들의 핸드오버 지연시간에 대한 비교 분석)

  • Kong, Ki-Sik
    • Journal of Digital Contents Society
    • /
    • v.11 no.3
    • /
    • pp.341-348
    • /
    • 2010
  • Unlike host-based IPv6 mobility support protocols such as Mobile IPv6 (MIPv6), Hierarchical Mobile IPv6 (HMIPv6), and Fast handover for Mobile IPv6 (FMIPv6), Proxy Mobile IPv6 (PMIPv6) is expected to accelerate the real deployment of IPv6 mobility support protocol by using only collaborative operations between the network entities without mobile node (MN) being involved. In this paper, we analyze and compare the handover latency of network-based IPv6 mobility support protocol (i.e., PMIPv6) with the representative host-based IPv6 mobility support protocols such as MIPv6, HMIPv6, and FMIPv6. Analytical results show that the handover latency of PMIPv6 is considerably lower than those of MIPv6 and HMIPv6, and the handover latency of PMIPv6 becomes lower than that of FMIPv6 in case the wireless link delay is greater than the delay between mobile access gateway (MAG) and local mobility anchor (LMA).

A Handover Scheme for Seamless Service Support between Wired and Wireless Networks over BcN (BcN 환경에서 유선망과 무선망간의 끊김없는 서비스를 지원하기 위한 핸드오버 절차)

  • Yang, Ok-Sik;Choi, Seong-Gon;Choi, Jun-Kyun
    • The KIPS Transactions:PartC
    • /
    • v.12C no.6 s.102
    • /
    • pp.799-808
    • /
    • 2005
  • This paper proposes low latency handover procedure for seamless connectivity and QoS support between wired (e.g. Ethernet) and wireless (e.g. WLAN, WiBro(802.16-compatible), CDMA) networks by the mobile-assisted and server-initiated handover strategy. It is assumed that the server decides the best target network considering network status and user preferences. In this algorithm a mobile terminal associates with the wireless link decided at the server In advance and receives CoA as well. When handover occurs without the prediction in wired networks, the server performs fast binding update using physical handover trigger through the MIH(media independent handover) function. As a result, a mobile terminal does not need to perform L2 and L3 handover during handover so that this procedure decreases handover latency and loss.

A Handover Procedure for Seamless Service Support between Wired and Wireless Networks (유선망과 무선망간의 끊김없는 서비스를 지원하기 위한 핸드오버 절차)

  • Yang, Ok-Sik;Choi, Seong-Gon;Choi, Jun-Kyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.45-52
    • /
    • 2005
  • This paper proposes low latency handover procedure for seamless connectivity and QoS support between wired (e.g. Ethernet) and wireless (e.g. WLAN, WiBro(802.16-compatible), CDMA) networks by the mobile-assisted and server-initiated handover strategy. It is assumed that the server decides the best target network considering network status and user preferences. In this procedure, a mobile terminal associates with the wireless link decided at the server in advance and receives CoA as well. When handover occurs without the prediction in wired networks, the server performs fast binding update using physical handover trigger through the MIH (media independent handover) function. As a result, a mobile terminal does not need to perform L2 and L3 handover during handover so that this procedure decreases handover latency and loss.