• Title/Summary/Keyword: Network Flooding Attack

Search Result 63, Processing Time 0.028 seconds

An Adaptive Probe Detection Model using Fuzzy Cognitive Maps

  • Lee, Se-Yul;Kim, Yong-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.660-663
    • /
    • 2003
  • The advanced computer network technology enables connectivity of computers through an open network environment. There has been growing numbers of security threat to the networks. Therefore, it requires intrusion detection and prevention technologies. In this paper, we propose a network based intrusion detection model using Fuzzy Cognitive Maps(FCM) that can detect intrusion by the Denial of Service(DoS) attack detection method adopting the packet analyses. A DoS attack appears in the form of the Probe and Syn Flooding attack which is a typical example. The Sp flooding Preventer using Fuzzy cognitive maps(SPuF) model captures and analyzes the packet information to detect Syn flooding attack. Using the result of analysis of decision module, which utilized FCM, the decision module measures the degree of danger of the DoS and trains the response module to deal with attacks. The result of simulating the "KDD ′99 Competition Data Set" in the SPuF model shows that the Probe detection rates were over 97 percentages.

  • PDF

A Study on Network based Intelligent Intrusion Prevention model by using Fuzzy Cognitive Maps on Denial of Service Attack (서비스 거부 공격에서의 퍼지인식도를 이용한 네트워크기반의 지능적 침입 방지 모델에 관한 연구)

  • Lee, Se-Yul;Kim, Yong-Soo;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.148-153
    • /
    • 2003
  • A DoS(Denial of Service) attack appears in the form of the intrusion attempt and Syn Flooding attack is a typical example. The Syn Flooding attack takes advantage of the weak point of 3-way handshake between the end-points of TCP which is the connection-oriented transmission service and has the reliability This paper proposes a NIIP(Network based Intelligent Intrusion Prevention) model. This model captures and analyzes the packet informations for the detection of Syn Flooding attack. Using the result of analysis of decision module, the decision module, which utilizes FCM(Fuzzy Cognitive Maps), measures the degree of danger of the DoS and trains the response module to deal with attacks. This model is a network based intelligent intrusion prevention model that reduces or prevents the danger of Syn Flooding attack.

Utilizing OpenFlow and sFlow to Detect and Mitigate SYN Flooding Attack

  • Nugraha, Muhammad;Paramita, Isyana;Musa, Ardiansyah;Choi, Deokjai;Cho, Buseung
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.8
    • /
    • pp.988-994
    • /
    • 2014
  • Software Defined Network (SDN) is a new technology in computer network area which enables user to centralize control plane. The security issue is important in computer network to protect system from attackers. SYN flooding attack is one of Distributed Denial of Service attack methods which are popular to degrade availability of targeted service on Internet. There are many methods to protect system from attackers, i.e. firewall and IDS. Even though firewall is designed to protect network system, but it cannot mitigate DDoS attack well because it is not designed to do so. To improve performance of DDOS mitigation we utilize another mechanism by using SDN technology such as OpenFlow and sFlow. The methodology of sFlow to detect attacker is by capturing and sum cumulative traffic from each agent to send to sFlow collector to analyze. When sFlow collector detect some traffics as attacker, OpenFlow controller will modify the rule in OpenFlow table to mitigate attacks by blocking attack traffic. Hence, by combining sum cumulative traffic use sFlow and blocking traffic use OpenFlow we can detect and mitigate SYN flooding attack quickly and cheaply.

A SYN flooding attack detection approach with hierarchical policies based on self-information

  • Sun, Jia-Rong;Huang, Chin-Tser;Hwang, Min-Shiang
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.346-354
    • /
    • 2022
  • The SYN flooding attack is widely used in cyber attacks because it paralyzes the network by causing the system and bandwidth resources to be exhausted. This paper proposed a self-information approach for detecting the SYN flooding attack and provided a detection algorithm with a hierarchical policy on a detection time domain. Compared with other detection methods of entropy measurement, the proposed approach is more efficient in detecting the SYN flooding attack, providing low misjudgment, hierarchical detection policy, and low time complexity. Furthermore, we proposed a detection algorithm with limiting system resources. Thus, the time complexity of our approach is only (log n) with lower time complexity and misjudgment rate than other approaches. Therefore, the approach can detect the denial-of-service/distributed denial-of-service attacks and prevent SYN flooding attacks.

Design of Hybrid Network Probe Intrusion Detector using FCM

  • Kim, Chang-Su;Lee, Se-Yul
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • The advanced computer network and Internet technology enables connectivity of computers through an open network environment. Despite the growing numbers of security threats to networks, most intrusion detection identifies security attacks mainly by detecting misuse using a set of rules based on past hacking patterns. This pattern matching has a high rate of false positives and can not detect new hacking patterns, making it vulnerable to previously unidentified attack patterns and variations in attack and increasing false negatives. Intrusion detection and prevention technologies are thus required. We proposed a network based hybrid Probe Intrusion Detection model using Fuzzy cognitive maps (PIDuF) that detects intrusion by DoS (DDoS and PDoS) attack detection using packet analysis. A DoS attack typically appears as a probe and SYN flooding attack. SYN flooding using FCM model captures and analyzes packet information to detect SYN flooding attacks. Using the result of decision module analysis, which used FCM, the decision module measures the degree of danger of the DoS and trains the response module to deal with attacks. For the performance evaluation, the "IDS Evaluation Data Set" created by MIT was used. From the simulation we obtained the max-average true positive rate of 97.064% and the max-average false negative rate of 2.936%. The true positive error rate of the PIDuF is similar to that of Bernhard's true positive error rate.

A Simulation Analysis of Abnormal Traffic-Flooding Attack under the NGSS environment

  • Kim, Hwan-Kuk;Seo, Dong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1568-1570
    • /
    • 2005
  • The internet is already a part of life. It is very convenient and people can do almost everything with internet that should be done in real life. Along with the increase of the number of internet user, various network attacks through the internet have been increased as well. Also, Large-scale network attacks are a cause great concern for the computer security communication. These network attack becomes biggest threat could be down utility of network availability. Most of the techniques to detect and analyze abnormal traffic are statistic technique using mathematical modeling. It is difficult accurately to analyze abnormal traffic attack using mathematical modeling, but network simulation technique is possible to analyze and simulate under various network simulation environment with attack scenarios. This paper performs modeling and simulation under virtual network environment including $NGSS^{1}$ system to analyze abnormal traffic-flooding attack.

  • PDF

A Probe Prevention Model for Detection of Denial of Service Attack on TCP Protocol (TCP 프로토콜을 사용하는 서비스거부공격 탐지를 위한 침입시도 방지 모델)

  • Lee, Se-Yul;Kim, Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.491-498
    • /
    • 2003
  • The advanced computer network technology enables connectivity of computers through an open network environment. There has been growing numbers of security threat to the networks. Therefore, it requires intrusion detection and prevention technologies. In this paper, we propose a network based intrusion detection model using FCM(Fuzzy Cognitive Maps) that can detect intrusion by the DoS attack detection method adopting the packet analyses. A DoS attack appears in the form of the Probe and Syn Flooding attack which is a typical example. The SPuF(Syn flooding Preventer using Fussy cognitive maps) model captures and analyzes the packet informations to detect Syn flooding attack. Using the result of analysis of decision module, which utilized FCM, the decision module measures the degree of danger of the DoS and trains the response module to deal with attacks. For the performance comparison, the "KDD′99 Competition Data Set" made by MIT Lincoln Labs was used. The result of simulating the "KDD′99 Competition Data Set" in the SPuF model shows that the probe detection rates were over 97 percentages.

Sampling based Network Flooding Attack Detection/Prevention System for SDN (SDN을 위한 샘플링 기반 네트워크 플러딩 공격 탐지/방어 시스템)

  • Lee, Yungee;Kim, Seung-uk;Vu Duc, Tiep;Kim, Kyungbaek
    • Smart Media Journal
    • /
    • v.4 no.4
    • /
    • pp.24-32
    • /
    • 2015
  • Recently, SDN is actively used as datacenter networks and gradually increase its applied areas. Along with this change of networking environment, research of deploying network security systems on SDN becomes highlighted. Especially, systems for detecting network flooding attacks by monitoring every packets through ports of OpenFlow switches have been proposed. However, because of the centralized management of a SDN controller which manage multiple switches, it may be substantial overhead that the attack detection system continuously monitors all the flows. In this paper, a sampling based network flooding attack detection and prevention system is proposed to reduce the overhead of monitoring packets and to achieve reasonable functionality of attack detection and prevention. The proposed system periodically takes sample packets of network flows with the given sampling conditions, analyzes the sampled packets to detect network flooding attacks, and block the attack flows actively by managing the flow entries in OpenFlow switches. As network traffic sampler, sFlow agent is used, and snort, an opensource IDS, is used to detect network flooding attack from the sampled packets. For active prevention of the detected attacks, an OpenDaylight application is developed and applied. The proposed system is evaluated on the local testbed composed with multiple OVSes (Open Virtual Switch), and the performance and overhead of the proposed system under various sampling condition is analyzed.

An Online Response System for Anomaly Traffic by Incremental Mining with Genetic Optimization

  • Su, Ming-Yang;Yeh, Sheng-Cheng
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.375-381
    • /
    • 2010
  • A flooding attack, such as DoS or Worm, can be easily created or even downloaded from the Internet, thus, it is one of the main threats to servers on the Internet. This paper presents an online real-time network response system, which can determine whether a LAN is suffering from a flooding attack within a very short time unit. The detection engine of the system is based on the incremental mining of fuzzy association rules from network packets, in which membership functions of fuzzy variables are optimized by a genetic algorithm. The incremental mining approach makes the system suitable for detecting, and thus, responding to an attack in real-time. This system is evaluated by 47 flooding attacks, only one of which is missed, with no false positives occurring. The proposed online system belongs to anomaly detection, not misuse detection. Moreover, a mechanism for dynamic firewall updating is embedded in the proposed system for the function of eliminating suspicious connections when necessary.

A Protection Method using Destination Address Packet Sampling for SYN Flooding Attack in SDN Environments (SDN 환경에서의 목적지 주소별 패킷 샘플링을 이용한 SYN Flooding 공격 방어기법)

  • Bang, Gihyun;Choi, Deokjai;Bang, Sangwon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.1
    • /
    • pp.35-41
    • /
    • 2015
  • SDN(Software Defined Networking) has been considered as a new future computer network architecture and DDoS(Distributed Denial of Service) is the biggest threat in the network security. In SDN architecture, we present the technique to defend the DDoS SYN Flooding attack that is one of the DDoS attack method. First, we monitor the Backlog queue in order to reduce the unnecessary monitoring resources. If the Backlog queue of the certain server is occupied over 70%, the sFlow performs packet sampling with the server address as the destination address. To distinguish between the attacker and the normal user, we use the source address. We decide the SYN packet threshold using the remaining Backlog queue that possible to allow the number of connections. If certain sources address send the SYN packet over the threshold, we judge that this address is attacker. The controller will modify the flow table entry to block attack traffics. By using this method, we reduce the resource consumption about the unnecessary monitoring and the protection range is expanded to all switches. The result achieved from our experiment show that we can prevent the SYN Flooding attack before the Backlog queue is fully occupied.