• Title/Summary/Keyword: Network Features

Search Result 2,705, Processing Time 0.034 seconds

Network Intrusion Detection Using Transformer and BiGRU-DNN in Edge Computing

  • Huijuan Sun
    • Journal of Information Processing Systems
    • /
    • v.20 no.4
    • /
    • pp.458-476
    • /
    • 2024
  • To address the issue of class imbalance in network traffic data, which affects the network intrusion detection performance, a combined framework using transformers is proposed. First, Tomek Links, SMOTE, and WGAN are used to preprocess the data to solve the class-imbalance problem. Second, the transformer is used to encode traffic data to extract the correlation between network traffic. Finally, a hybrid deep learning network model combining a bidirectional gated current unit and deep neural network is proposed, which is used to extract long-dependence features. A DNN is used to extract deep level features, and softmax is used to complete classification. Experiments were conducted on the NSLKDD, UNSWNB15, and CICIDS2017 datasets, and the detection accuracy rates of the proposed model were 99.72%, 84.86%, and 99.89% on three datasets, respectively. Compared with other relatively new deep-learning network models, it effectively improved the intrusion detection performance, thereby improving the communication security of network data.

AANet: Adjacency auxiliary network for salient object detection

  • Li, Xialu;Cui, Ziguan;Gan, Zongliang;Tang, Guijin;Liu, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3729-3749
    • /
    • 2021
  • At present, deep convolution network-based salient object detection (SOD) has achieved impressive performance. However, it is still a challenging problem to make full use of the multi-scale information of the extracted features and which appropriate feature fusion method is adopted to process feature mapping. In this paper, we propose a new adjacency auxiliary network (AANet) based on multi-scale feature fusion for SOD. Firstly, we design the parallel connection feature enhancement module (PFEM) for each layer of feature extraction, which improves the feature density by connecting different dilated convolution branches in parallel, and add channel attention flow to fully extract the context information of features. Then the adjacent layer features with close degree of abstraction but different characteristic properties are fused through the adjacent auxiliary module (AAM) to eliminate the ambiguity and noise of the features. Besides, in order to refine the features effectively to get more accurate object boundaries, we design adjacency decoder (AAM_D) based on adjacency auxiliary module (AAM), which concatenates the features of adjacent layers, extracts their spatial attention, and then combines them with the output of AAM. The outputs of AAM_D features with semantic information and spatial detail obtained from each feature are used as salient prediction maps for multi-level feature joint supervising. Experiment results on six benchmark SOD datasets demonstrate that the proposed method outperforms similar previous methods.

Combination Tandem Architecture with Segmental Features for Robust Speech Recognition (강인한 음성 인식을 위한 탠덤 구조와 분절 특징의 결합)

  • Yun, Young-Sun;Lee, Yun-Keun
    • MALSORI
    • /
    • no.62
    • /
    • pp.113-131
    • /
    • 2007
  • It is reported that the segmental feature based recognition system shows better results than conventional feature based system in the previous studies. On the other hand, the various studies of combining neural network and hidden Markov models within a single system are done with expectations that it may potentially combine the advantages of both systems. With the influence of these studies, tandem approach was presented to use neural network as the classifier and hidden Markov models as the decoder. In this paper, we applied the trend information of segmental features to tandem architecture and used posterior probabilities, which are the output of neural network, as inputs of recognition system. The experiments are performed on Auroral database to examine the potentiality of the trend feature based tandem architecture. From the results, the proposed system outperforms on very low SNR environments. Consequently, we argue that the trend information on tandem architecture can be additionally used for traditional MFCC features.

  • PDF

A Probabilistic Network for Facial Feature Verification

  • Choi, Kyoung-Ho;Yoo, Jae-Joon;Hwang, Tae-Hyun;Park, Jong-Hyun;Lee, Jong-Hoon
    • ETRI Journal
    • /
    • v.25 no.2
    • /
    • pp.140-143
    • /
    • 2003
  • In this paper, we present a probabilistic approach to determining whether extracted facial features from a video sequence are appropriate for creating a 3D face model. In our approach, the distance between two feature points selected from the MPEG-4 facial object is defined as a random variable for each node of a probability network. To avoid generating an unnatural or non-realistic 3D face model, automatically extracted 2D facial features from a video sequence are fed into the proposed probabilistic network before a corresponding 3D face model is built. Simulation results show that the proposed probabilistic network can be used as a quality control agent to verify the correctness of extracted facial features.

  • PDF

Impulse Noise Detection Using Self-Organizing Neural Network and Its Application to Selective Median Filtering (Self-Organizing Neural Network를 이용한 임펄스 노이즈 검출과 선택적 미디언 필터 적용)

  • Lee Chong Ho;Dong Sung Soo;Wee Jae Woo;Song Seung Min
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.3
    • /
    • pp.166-173
    • /
    • 2005
  • Preserving image features, edges and details in the process of impulsive noise filtering is an important problem. To avoid image blurring, only corrupted pixels must be filtered. In this paper, we propose an effective impulse noise detection method using Self-Organizing Neural Network(SONN) which applies median filter selectively for removing random-valued impulse noises while preserving image features, edges and details. Using a $3\times3$ window, we obtain useful local features with which impulse noise patterns are classified. SONN is trained with sample image patterns and each pixel pattern is classified by its local information in the image. The results of the experiments with various images which are the noise range of $5-15\%$ show that our method performs better than other methods which use multiple threshold values for impulse noise detection.

Design of a pattern recognizing neural network using information-processing mechanism in optic nerve fields (시각정보 처리 메커니즘을 이용한 형태정보인식 신경회로망의 구성)

  • Kang, Ick-Tae;Kim, Wook-Hyun;Lee, Gun-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.33-42
    • /
    • 1995
  • A new neural network architecture for the recognition of patterns from images is proposed, which is partially based on the results of physiological studies. The proposed network is composed of multi-layers and the nerve cells in each layer are connected by spatial filters which approximate receptive fields in optic nerve fields. In the proposed method, patterns recognition for complicated images is carried out using global features as well as local features such as lines and end-points. A new generating method of matched filters representing global features is proposed in this network.

  • PDF

DeepAct: A Deep Neural Network Model for Activity Detection in Untrimmed Videos

  • Song, Yeongtaek;Kim, Incheol
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.150-161
    • /
    • 2018
  • We propose a novel deep neural network model for detecting human activities in untrimmed videos. The process of human activity detection in a video involves two steps: a step to extract features that are effective in recognizing human activities in a long untrimmed video, followed by a step to detect human activities from those extracted features. To extract the rich features from video segments that could express unique patterns for each activity, we employ two different convolutional neural network models, C3D and I-ResNet. For detecting human activities from the sequence of extracted feature vectors, we use BLSTM, a bi-directional recurrent neural network model. By conducting experiments with ActivityNet 200, a large-scale benchmark dataset, we show the high performance of the proposed DeepAct model.

A Classification Techniques of Solder Joint Using Neural Network in Visual Inspection System (시각 검사 시스템에서 신경 회로망을 이용한 납땜 상태 분류 기법)

  • 오제휘;차영엽
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.26-35
    • /
    • 1998
  • This paper presents a visual inspection algorithm looking for solder joint defects of IC chips on PCBs (Printed Circuit Boards). In this algorithm, seven features are proposed in order to categorize the solder joints into four classes such as normal, insufficient, excess, and no solder, and optimal back-propagation network is determined by error evaluation which depend on the number of neurons in hidden and out-put layers and selection of the features. In the end, a good accuracy of classification performance, an optimal determination of network structure and the effectiveness of chosen seven features are examined by experiment using proposed inspection algorithm.

  • PDF

Action Recognition with deep network features and dimension reduction

  • Li, Lijun;Dai, Shuling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.832-854
    • /
    • 2019
  • Action recognition has been studied in computer vision field for years. We present an effective approach to recognize actions using a dimension reduction method, which is applied as a crucial step to reduce the dimensionality of feature descriptors after extracting features. We propose to use sparse matrix and randomized kd-tree to modify it and then propose modified Local Fisher Discriminant Analysis (mLFDA) method which greatly reduces the required memory and accelerate the standard Local Fisher Discriminant Analysis. For feature encoding, we propose a useful encoding method called mix encoding which combines Fisher vector encoding and locality-constrained linear coding to get the final video representations. In order to add more meaningful features to the process of action recognition, the convolutional neural network is utilized and combined with mix encoding to produce the deep network feature. Experimental results show that our algorithm is a competitive method on KTH dataset, HMDB51 dataset and UCF101 dataset when combining all these methods.

Face Recognition Network using gradCAM (gradCam을 사용한 얼굴인식 신경망)

  • Chan Hyung Baek;Kwon Jihun;Ho Yub Jung
    • Smart Media Journal
    • /
    • v.12 no.2
    • /
    • pp.9-14
    • /
    • 2023
  • In this paper, we proposed a face recognition network which attempts to use more facial features awhile using smaller number of training sets. When combining the neural network together for face recognition, we want to use networks that use different part of the facial features. However, the network training chooses randomly where these facial features are obtained. Other hand, the judgment basis of the network model can be expressed as a saliency map through gradCAM. Therefore, in this paper, we use gradCAM to visualize where the trained face recognition model has made a observations and recognition judgments. Thus, the network combination can be constructed based on the different facial features used. Using this approach, we trained a network for small face recognition problem. In an simple toy face recognition example, the recognition network used in this paper improves the accuracy by 1.79% and reduces the equal error rate (EER) by 0.01788 compared to the conventional approach.