• Title/Summary/Keyword: Network Evolution

Search Result 643, Processing Time 0.191 seconds

Congestion Detection for QoS-enabled Wireless Networks and its Potential Applications

  • Ramneek, Ramneek;Hosein, Patrick;Choi, Wonjun;Seok, Woojin
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.513-522
    • /
    • 2016
  • We propose a mechanism for monitoring load in quality of service (QoS)-enabled wireless networks and show how it can be used for network management as well as for dynamic pricing. Mobile network traffic, especially video, has grown exponentially over the last few years and it is anticipated that this trend will continue into the future. Driving factors include the availability of new affordable, smart devices, such as smart-phones and tablets, together with the expectation of high quality user experience for video as one would obtain at home. Although new technologies such as long term evolution (LTE) are expected to help satisfy this demand, the fact is that several other mechanisms will be needed to manage overload and congestion in the network. Therefore, the efficient management of the expected huge data traffic demands is critical if operators are to maintain acceptable service quality while making a profit. In the current work, we address this issue by first investigating how the network load can be accurately monitored and then we show how this load metric can then be used to provide creative pricing plans. In addition, we describe its applications to features like traffic offloading and user satisfaction tracking.

Optimization of Design Variables of a Train Suspension Using Neural Network Model (신경회로망 모델을 이용한 철도 현가장치 설계변수 최적화)

  • 김영국;박찬경;황희수;박태원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.7
    • /
    • pp.542-549
    • /
    • 2002
  • Computer simulation is essential to design the suspension elements of railway vehicle. By computer simulation, engineers can assess the feasibility of given design variables and chance them to get a bettor design. Even though commercial simulation codes are used, the computational time and cost remains non-trivial. Therefore, malty researchers have used a mesa model made by sampling data through simulation. In this paper, four mesa-models for each index group such as ride comfort, derailment Quotient, unloading radio and stability index, are constructed by use of neural network. After these meta models are constructed, multi-objective optimization are achieved by using the differential evolution. This paper shows that the optimization of design variables using the neural network model is very efficient to solve the complex optimization Problem.

A Multi-Objective Differential Evolution for Just-In-Time Door Assignment and Truck Scheduling in Multi-door Cross Docking Problems

  • Wisittipanich, Warisa;Hengmeechai, Piya
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.3
    • /
    • pp.299-311
    • /
    • 2015
  • Nowadays, the distribution centres aim to reduce costs by reducing inventory and timely shipment. Cross docking is a logistics strategy in which products delivered to a distribution centre by inbound trucks are directly unloaded and transferred to outbound trucks with minimum warehouse storage. Moreover, on-time delivery in a distribution network becomes very crucial especially when several distribution centres and customers are involved. Therefore, an efficient truck scheduling is needed to synchronize the delivery throughout the network in order to satisfy all stake-holders. This paper presents a mathematical model of a mixed integer programming for door assignment and truck scheduling in a multiple inbound and outbound doors cross docking problem according to Just-In-Time concept. The objective is to find the schedule of transhipment operations to simultaneously minimize the total earliness and total tardiness of trucks. Then, a multi-objective differential evolution (MODE) is proposed with an encoding scheme and four decoding strategies, called ITSH, ITDD, OTSH and OTDD, to find a Pareto frontier for the multi-door cross docking problems. The performances of MODE are evaluated using 15 generated instances. The numerical experiments demonstrate that the proposed algorithm is capable of finding a set of diverse and high quality non-dominated solutions.

Time-history analysis based optimal design of space trusses: the CMA evolution strategy approach using GRNN and WA

  • Kaveh, A.;Fahimi-Farzam, M.;Kalateh-Ahani, M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.379-403
    • /
    • 2012
  • In recent years, the need for optimal design of structures under time-history loading aroused great attention in researchers. The main problem in this field is the extremely high computational demand of time-history analyses, which may convert the solution algorithm to an illogical one. In this paper, a new framework is developed to solve the size optimization problem of steel truss structures subjected to ground motions. In order to solve this problem, the covariance matrix adaptation evolution strategy algorithm is employed for the optimization procedure, while a generalized regression neural network is utilized as a meta-model for fitness approximation. Moreover, the computational cost of time-history analysis is decreased through a wavelet analysis. Capability and efficiency of the proposed framework is investigated via two design examples, comprising of a tower truss and a footbridge truss.

Implementation of platform for long-term evolution cell perspective resource utilization analysis

  • Um, Jungsun;Kim, Igor;Park, Seungkeun
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.232-245
    • /
    • 2021
  • As wireless communication continues to develop in limited frequency resource environments, it is becoming important to identify the state of spectrum utilization and predict the amount needed in future. It is essential to collect reliable information for data analysis. This paper introduces a platform that enables the gathering of the scheduling information of a long-term evolution (LTE) cellular system without connecting to the network. A typical LTE terminal can confirm its assigned resource information using the configuration parameters delivered from a network. However, our platform receives and captures only the LTE signal over the air and then enables the estimation of the data relevant to scheduling for all terminals within an LTE cell. After extracting the control channel signal without loss from all LTE subframes, it detects valid downlink control information using the proposed algorithm, which is based on the error vector magnitude of depatterned symbols. We verify the reliability of the developed platform by comparing it with real data from mobile phones and service operators. The average difference in resource block utilization is only 0.28%.

3G+ CDMA Wireless Network Technology Evolution: Application service QoS Performance Study (3G+ CDMA망에서의 기술 진화: 응용 서비스 QoS 성능 연구)

  • 김재현
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.10
    • /
    • pp.1-9
    • /
    • 2004
  • User-Perceived application-level performance is a key to the adoption and success of CDMA 2000. To predict this performance in advance, a detailed end-to-end simulation model of a CDMA network was built to include application traffic characteristics, network architecture, network element details, and protocol features. We assess the user application performance when a Radio Access Network (RAN) and a Core Network (CN) adopt different transport architectures such as ATM and If. For voice Performance, we found that the vocoder bypass scenario shows 8% performance improvement over the others. For data packet performance, we found that HTTP v.1.1 shows better performance than that of HTTP v.1.0 due to the pipelining and TCP persistent connection. We also found that If transport technology is better solution for higher FER environment since the IP packet overhead is smaller than that of ATM for web browsing data traffic, while it shows opposite effect to small size voice packet in RAN architecture. Though simulation results we showed that the 3G-lX EV system gives much better packet delay performance than 3G-lX RTT, the main conclusion is that end-to-end application-level performance is affected by various elements and layers of the network and thus it must be considered in all phases of the technology evolution process.

Integration of Optimality, Neural Networks, and Physiology for Field Studies of the Evolution of Visually-elicited Escape Behaviors of Orthoptera: A Minireview and Prospects

  • Shin, Hong-Sup;Jablonski, Piotr G.
    • Journal of Ecology and Environment
    • /
    • v.31 no.2
    • /
    • pp.89-95
    • /
    • 2008
  • Sensing the approach of a predator is critical to the survival of prey, especially when the prey has no choice but to escape at a precisely timed moment. Escape behavior has been approached from both proximate and ultimate perspectives. On the proximate level, empirical research about electrophysiological mechanisms for detecting predators has focused on vision, an important modality that helps prey to sense approaching danger. Studies of looming-sensitive neurons in locusts are a good example of how the selective sensitivity of nervous systems towards specific targets, especially approaching objects, has been understood and realistically modeled in software and robotic systems. On the ultimate level, general optimality models have provided an evolutionary framework by considering costs and benefits of visually elicited escape responses. A recent paper showed how neural network models can be used to understand the evolution of visually mediated antipredatory behaviors. We discuss this new trend towards integration of these relatively disparate approaches, the proximate and the ultimate perspectives, for understanding of the evolution of behavior of predators and prey. Focusing on one of the best-studied escape pathway models, the Orthopteran LGMD/DCMD pathway, we discuss how ultimate-level optimality modeling can be integrated with proximate-level studies of escape behaviors in animals.

Development of Evolution Program to Find the Multiple Shortest Paths in High Complex and Large Size Real Traffic Network (복잡도가 높고 대규모 실제 교통네트워크에서 다수 최적경로들을 탐색할 수 있는 진화 프로그램의 개발)

  • Kim, Sung-Soo;Jeong, Jong-Du;Min, Seung-Ki
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.73-82
    • /
    • 2002
  • It is difficult to find the shortest paths using existing algorithms (Dijkstra, Floyd-Warshall algorithm, and etc) in high complex and large size real traffic networks The objective of this paper is to develop an evolution program to find the multiple shortest paths within reasonable time in these networks including turn-restrictions, U-turns, and etc.

  • PDF

Behavior Analysis of Evolved Neural Network based on Cellular Automata

  • Song, Geum-Beom;Cho, Sung-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.181-184
    • /
    • 1998
  • CAM-Brain is a model to develop neural networks based in cellular automata by evolution, and finally aims at a model as and artificial brain,. In order to show the feasibility of evolutionary engineering to develop an artificial brain we have attempted to evolve a module of CAM-Brain for the problem to control a mobile robot, In this paper, we present some recent results obtained by analyzing the behaviors of the evolved neural module. Several experiments reveal a couple of problems that should be solved when CAM-Brain evolves to control a mobile robot. so that some modification of the original model is proposed to solve them. The modified CAM-Brain has evolved to behave well in a simulated environment, and a thorough analysis proves the power of evolution.

  • PDF

The Role of Information Sharing and Social Community in the Evolution of Collaborative Food Networks

  • Bolici, Francesco
    • Agribusiness and Information Management
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • In this exploratory analysis, we investigate the genesis and the evolution of local food-purchasing networks created and operated by consumers. In details, we describe how collecting and sharing information about food-products can become a central activity for some consumers' communities and how these communities are starting to play an active role in the food supply chain. We define this community-based food-purchasing model as collaborative food network (CFN), and we analytically describe its characteristics and differences with respect to the traditional and industrialized agrifood supply chain models. A collaborative food network community in Italy, known as GAS ("Gruppi di Acquisto Solidale" - "Solidarity Purchasing Groups"), is introduced as an example of our analytical model. We will use this empirical example to present the strengths and weaknesses of the CFN model.

  • PDF