• 제목/요약/키워드: Network Estimation

검색결과 1,966건 처리시간 0.028초

Instruction-Level Power Estimator for Sensor Networks

  • Joe, Hyun-Woo;Park, Jae-Bok;Lim, Chae-Deok;Woo, Duk-Kyun;Kim, Hyung-Shin
    • ETRI Journal
    • /
    • 제30권1호
    • /
    • pp.47-58
    • /
    • 2008
  • In sensor networks, analyzing power consumption before actual deployment is crucial for maximizing service lifetime. This paper proposes an instruction-level power estimator (IPEN) for sensor networks. IPEN is an accurate and fine grain power estimation tool, using an instruction-level simulator. It is independent of the operating system, so many different kinds of sensor node software can be simulated for estimation. We have developed the power model of a Micaz-compatible mote. The power consumption of the ATmega128L microcontroller is modeled with the base energy cost and the instruction overheads. The CC2420 communication component and other peripherals are modeled according to their operation states. The energy consumption estimation module profiles peripheral accesses and function calls while an application is running. IPEN has shown excellent power estimation accuracy, with less than 5% estimation error compared to real sensor network implementation. With IPEN's high precision instruction-level energy prediction, users can accurately estimate a sensor network's energy consumption and achieve fine-grained optimization of their software.

  • PDF

인공신경망 및 통계적 방법을 이용한 오존 형성의 예측 (Prediction of Ozone Formation Based on Neural Network and Stochastic Method)

  • 오세천;여영구
    • 청정기술
    • /
    • 제7권2호
    • /
    • pp.119-126
    • /
    • 2001
  • 인공신경 회로망과 통계적 방법을 이용하여 오존 형성의 예측에 관한 연구를 수행하였다. 파라미터 평가방법으로는 실시간 파라미터를 평가하기 위하여 ELS 및 RML 방법이 사용되었으며 오존 형성의 모델로는 ARMAX 모델을 사용하였다. 또한 3층 구조를 갖는 인공신경 회로망 방법을 이용하여 오존 형성의 예측 시험을 수행하였으며 본 연구에 사용된 통계적 방법의 성능을 평가하기 위하여 오존 형성의 예측결과를 실제 자료와 비교 분석을 하였다. 실제 자료와의 비교를 통하여 파라미터 평가 방법 및 인공신경 회로망 방법에 근거한 예측방법이 제한된 예측 구간 내에서 만족할 만한 성능을 보임을 확인할 수 있었다.

  • PDF

자동차 환경내 안정적인 VoIP 시스템을 위한 네트워크 지터 추정 알고리즘 (Network Jitter Estimation Algorithm for Robust VoIP System in Vehicle Environment)

  • 서광덕;이진호;김형국
    • 한국ITS학회 논문지
    • /
    • 제10권4호
    • /
    • pp.93-99
    • /
    • 2011
  • 본 논문에서는 자동차 환경내 안정된 VoIP 통신시스템을 위한 새로운 네트워크 지터 추정 알고리즘을 제안한다. 제안된 알고리즘은 패킷간의 도착시간과 생성시간 차이를 계산하여 패킷이 겪은 현재 네트워크 환경을 추정하고, 추정된 네트워크 환경을 통해 네트워크 지터 추정에 사용될 네트워크 지터 분산 가중치를 조정한 후에, 조정된 지터 분산 가중치와 네트워크 지터의 평균과 분산을 계산하여 다음에 도착할 패킷의 네트워크 지터를 추정한다. 본 논문에서는 WiFi를 이용한 VoIP에서 수신단에 도착한 패킷에 대해 Delay와 Loss를 측정함으로써 제안된 방식의 우수성을 입증하였다.

FLC-FNN 제어기에 의한 유도전동기의 ANN 센서리스 제어 (ANN Sensorless Control of Induction Motor with FLC-FNN Controller)

  • 최정식;고재섭;정동화
    • 전기학회논문지P
    • /
    • 제55권3호
    • /
    • pp.117-122
    • /
    • 2006
  • The paper is proposed artificial neural network(ANN) sensorless control of induction motor drive with fuzzy learning control-fuzzy neural network(FLC-FNN) controller. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also this paper is proposed. speed control of induction motor using FLC-FNN and estimation of speed using ANN controller. The back Propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed so that the actual state variable will coincide with the desired one. The proposed control algorithm is applied to induction motor drive system controlled FLC-FNN and ANN controller, Also, this paper is proposed the analysis results to verify the effectiveness of the FLC-FNN and ANN controller.

신경회로망을 이용한 유도전동기의 파라미터 보상 (The Parameter Compensation Technique of Induction Motor by Neural Network)

  • 김종수;오세진;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.169-175
    • /
    • 2006
  • This paper describes how an Artificial Neural Network(ANN) can be employed to improve a speed estimation in a vector controlled induction motor drive. The system uses the ANN to estimate changes in the motor resistance, which enable the sensorless speed control method to work more accurately. Flux Observer is used for speed estimation in this system. Obviously the accuracy of the speed control of motor is dependent upon how well the parameters of the induction machine are known. These parameters vary with the operating conditions of the motor; both stator resistance(Rs) and rotor resistance(Rr) change with temperature, while the stator leakage inductance varies with load. This paper proposes a parameter compensation technique using artificial neural network for accurate speed estimation of induction motor and simulation results confirm the validity of the proposed scheme.

신경회로망을 이용한 불량 Data 처리에 관한 연구 (A Study for Bad Data Processing by a Neural Network)

  • 김익현;박종근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.186-190
    • /
    • 1989
  • A Study for Bad Data Processing in state estimation by a Neural Network is presented. State estimation is the process of assigning a value to an unknown system state variable based on measurement from that system according to some criteria. In this case, the ability to detect and identify bad measurements is extremely valuable, and much time in oder to achieve the state estimation is needed. This paper proposed new bad data processing using Neural Network in order to settle it. The concept of neural net is a parallel distributed processing. In this paper, EBP (Error Back Propagation) algorithm based on three layered feed forward network is used.

  • PDF

SPMSM 드라이브의 속도 센서리스를 위한 하이브리드 지능제어 (Hybrid Intelligent Control for Speed Sensorless of SPMSM Drive)

  • 이정철;이홍균;정동화
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권10호
    • /
    • pp.690-696
    • /
    • 2004
  • This paper is proposed a hybrid intelligent controller based on the vector controlled surface permanent magnet synchronous motor(SPMSM) drive system. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of SPMSM using neural network-fuzzy(NNF) control and speed estimation using artificial neural network(ANN) Controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

다층 신경회로망 기법을 이용한 하이드로포밍 공정의 성형압력곡선추정 (Multi-layered neural network-based pressure curve estimation for hydroforming)

  • 현봉섭;김재선;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.607-612
    • /
    • 1992
  • For hydroforming process, determination of back-up fluid pressure in chamber is one of the most essential tasks. In this paper, we present a back-up pressure estimation system which estimates the back-up pressure of hydroforming process utilizing a multi-layered neural network. The neural network learns the nonlinear relation ship between the back-up pressure and the geometric state variables of hydroforming process. The proposed method does not necessitate sophisticated analysis on hydroforming process but some geometric intuition. The experimental results show that the neural network well approximates the nonlinear relationship between the back-up pressure and the geometric state variables of hydroforming process, thus giving the good estimation of back-up pressure vs punch stroke curve.

  • PDF

Distributed estimation over complex adaptive networks with noisy links

  • Farhid, Morteza;Sedaaghi, Mohammad H.;Shamsi, Mousa
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.383-391
    • /
    • 2017
  • In this paper, we investigate the impacts of network topology on the performance of a distributed estimation algorithm, namely combine-then-adaptive (CTA) diffusion LMS, based on the data with or without the assumptions of temporal and spatial independence with noisy links. The study covers different network models, including the regular, small-world, random and scale-free whose the performance is analyzed according to the mean stability, mean-square errors, communication cost (link density) and robustness. Simulation results show that the noisy links do not cause divergence in the networks. Also, among the networks, the scale free network (heterogeneous) has the best performance in the steady state of the mean square deviation (MSD) while the regular is the worst case. The robustness of the networks against the issues like node failure and noisier node conditions is discussed as well as providing some guidelines on the design of a network in real condition such that the qualities of estimations are optimized.

스노우볼 샘플링 비율에 따른 네트워크의 특성 변화: 싸이월드의 사례 연구 (Impact of snowball sampling ratios on network characteristics estimation: A case study of Cyworld)

  • 곽해운;한승엽;안용열;문수복;정하웅
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (D)
    • /
    • pp.135-139
    • /
    • 2006
  • Today's social networking services have tens of millions of users, and are growing fast. Their sheer size poses a significant challenge in capturing and analyzing their topological characteristics. Snowball sampling is a popular method to crawl and sample network topologies, but requires a high sampling ratio for accurate estimation of certain metrics. In this work, we evaluate how close topological characteristics of snowball sampled networks are to the complete network. Instead of using a synthetically generated topology, we use the complete topology of Cyworld ilchon network. The goal of this work is to determine sampling ratios for accurate estimation of key topological characteristics, such as the degree distribution, the degree correlation, the assortativity, and the clustering coefficient.

  • PDF